• Title/Summary/Keyword: Zeolite

Search Result 1,488, Processing Time 0.034 seconds

Developement of Heavy Metal Adsorbent Utilising Natural Zeolite (천연(天然) Zeolite를 이용(利用)한 중금속(重金屬) 흡착제(吸着劑)의 개발(開發))

  • Kim, S.S.;Park, M.;Hur, N.H.;Choi, J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 1991
  • This study was carried out to develop the low-priced adsorbent by synthesizing the zeolite of high CEC with the natural zeolite and examining the ability of this zeolite to adsorb heavy metals. The dominant clay minerals were clinoptilolite and mordenite in natural zeolite, while phillipsite in the synthesized zeolite. Adsorption reaction of Cu and Zn on clays were reached to equilibrium after 1 hr. The amount of adsorption was increased as the concentrations of heavy metals or the initial pH of suspension was increased. The synthesized zeolite adsorbed heavy metals about twice as much as the natural zeolite. The adsorption of heavy metals on the synthesized zeolite was less affected by the initial pH of suspension than that on natural zeolite. At cumulative adsorption, the synthesized zeolite adsorbed much more heavy metals at early three treatments than the natural zeolite did. The amount of desorption by chloride salts was increased as the concentration of chloride salts was increased. The ability of salt to desorb was in the order of NaCl>$CaC1_2$>$AlC1_3$. It is estimated that the ability of the synthesized zeolite to remove heavy metals was better than that of the natural zeolite.

  • PDF

Separation of $C_3H_6/C_3H_8$ by PEBAX-NaY Zeolite Composite Membranes (PEBAX-NaY Zeolite 복합막에 의한 $C_3H_6/C_3H_8$ 분리에 관한 연구)

  • Kim, Seul-Gi;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2015
  • In this study, PEBAX[poly(ether-block-amide)]-NaY zeolite composite membranes were prepared, and those prepared membranes were studied on permeability of $C_3H_6$ and $C_3H_8$, and selectivity ($C_3H_6/C_3H_8$). NaY zeolite particles in PEBAX-NaY zeolite composite membranes was dispersed as aggregated particles with the size $0.5{\sim}2.5{\mu}m$ by SEM observation. TGA measurement showed the weight loss change resulted from the amount of NaY zeolite when NaY zeolite was added into PEBAX. By gas permeation experiment, the permeabilities of $C_3H_6$ and $C_3H_8$ were decreased by the more addition NaY zeolite in PEBAX. Overall, $C_3H_6$ was having higher permeability than $C_3H_8$. The selectivity $C_3H_6/C_3H_8$ was decreased by the more NaY zeolite in PEBAX.

Zeolite Filtration for Ammonium Nitrogen Removal in Drinking Water Treatment (정수처리에서 암모니아성질소 제거를 위한 제올라이트 여과)

  • 김우항;김충환
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2 mg/l of NH$_4$$\^$+/-N. Filtration of granular zeolite was conducted with 80 cm of effective column high and 120 m/d of flow rate. At above 100 mg/1 of zeolite dosage, ammonia concentration was decreased below 0.5 mg/l of NH$_4$$\^$+/-N in powdered zeolite test. But, turbidity was increased to 30 NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10∼12.5.

Development of La(III)-zeolite Composite for the Simultaneous Removal of Ammonium Nitrogen and Phosphate in Confined Water Bodies (호소수내 암모니아성 질소 및 인 동시 제거를 위한 란탄-제올라이트 복합체 개발)

  • Paek, Joo-Heon;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • This study was aimed to propose La(III)-zeolite composite which can effectively and simultaneously remove ammonia and phosphate in confined water bodies such as lakes and ponds. The optimum ratio of La(III):zeolite for the simultaneous removal of ammonia and phosphate was 0.0048 La(III) g:1 zeolite g. The drying temperature of La(III)-zeolite composite severely affected phosphate adsorption showing optimum condition at room temperature. It was revealed that the optimum dosage of La(III)-zeolite composite was 4.052 g/L at adsorption time of 90 min. The presence of alkalinity in aqueous solution brought positive effect on phosphate adsorption. Detachment of La(III) from La(III)-zeolite composite, which was dried at room temperature, was not observed in aquous solution. It indicates that La(III)-zeolite composite could effectively block phosphate released from sediment.

Utilization of Natural Zeolite for Removal of $NH_3$ Gas (($NH_3$ 가스 제거를 위한 천연 지오라이트의 이용)

  • Lee, Dong-Hoon;Choi, Jyung;Park, Moung-Sub
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.327-332
    • /
    • 1997
  • This study was conducted to find out the effect for removal of $NH_3$ gas, one of the offensive odor. The removal efficiencies of $NH_3$ gas through zeolie column increased with the decreased percolation velocity. The effect of zeolite colum in removing $NH_3$ gas was influenced by the water content of zeolite and the added amount of zeolite, but was not influenced by the setting method of zeolite. The $NH_3$ gas removing sequence of saturated cation species on zeolite was in order of Ca->Na->$NH_4$ ->Natural->K-zeolite. Consequently the effect of zeolite on $NH_3$ gas removal efficiency is consided by the water content, added amount and saturated cation of the zeolite.

  • PDF

Separation of $H_2$ and $N_2$ Gases by PTMSP-NaY Zeolite Composite Membranes (PTMSP-NaY Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Kim, Ok-Su;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • The PTMSP[Poly(1-trimethylsilyl-1-propyne)]-NaY zeolite composite membranes were prepared by adding 0~50 wt% NaY zeolite to PTMSP. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, GPC, DSC, TGA, and SEM. Gas permeation experiments were carried out at $23{\sim}26^{\circ}C$, $2kgf/cm^2$, and the permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of the NaY zeolite contents. According to TGA measurements, when NaY zeolite was inserted within the PTMSP, thermal stability of PTMSP was enhanced. Based on SEM observation, NaY zeolite was dispersed in the PTMSP-NaY zeolite composite membrane with a size of $1.5{\mu}m$. The permeability of $H_2$ and $N_2$ through the PTMSP-NaY zeolite composite membranes increased as NaY zeolite content increased. On the contrary, the selectivity($H_2/N_2$) of the PTMSP-NaY zeolite composite membranes decreased as zeolite content increased.

The Optical Properties of Monocationic Zeolite Suspensions (Monocationic Zeolite 현탁액(懸濁液)의 광학적(光學的) 특성(特性))

  • Kang, Shin-Jyung;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.159-163
    • /
    • 1986
  • The optical properties of monocationic zeolite suspension adsorbed with each of $Na^+$, $NH_4^+$, $Ca^{2+}$, and $Al^{3+}$ were studied in the wavelength range $200{\sim}800nm$. The results were as follows. 1. The optical density of zeolite suspension seemed to be affected by the light absorption of zeolite particles at the wavelength range of $200{\sim}300nm$ and by the light scattering of zeolite particles at wavelength of $300{\sim}800nm$. 2. At the wavelength range of $380{\sim}800nm$, the optical densities of monocationic zeoliteg differed mutually according to adsorbed cations and increased in the order of $Al-\;>\;Ca-\;>\;NH_4->\;Na-zeolite$ suspension. 3. It was convenient that at the wavelength range of $380{\sim}800nm$, the diluted suspension of zeolite was measured in the short wavelength and the concentrated suspension of zeolite was measured in the long wavelength. 4. Zeolite particles in zeolite suspension were aggregated and the size of aggregation size was larger in the order of $Al-\;>\;Ca-\;>\;Na-\;>\;NH_4-zeolite$.

  • PDF

The Estimation of the Loss Possibility of Zeolite in Sandy Soil (사질토양(砂質土壤)에서의 Zeolite 유실(流失) 가능성(可能性)의 추정(推定))

  • Kang, Shin-Jyung;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.311-317
    • /
    • 1986
  • This experiment was conducted to find out the minimum size of pores through that Zeolite particles moved vertically out with percolated solution in the sand column and to estimate whether they were lost through the pores in the field sandy soil. The results were as follows. 1. The amount of Zeolite loss through sand columns was increased in the order of the columns filled with $2{\sim}1>1{\sim}0.5>0.5>0.25mm$ sand particles. 2. The Zeolite particles lost through columns filled with $1{\sim}0.5$ and $0.5{\sim}0.25mm$ sand were clay fraction. 3. The pore sire that clay fraction of Zeolite mineral could migrate through was determined to be above $150{\mu}m$ and Jangchon subsoil was presumed to have possibility of Zeolite loss in consideration of its pore size distribution. 4. The suitable particle size of Zeolite for application in sandy soil was presumed to be above $2{\mu}m$.

  • PDF

Manufacturing of Mg-Zeolite Using for Simultaneous Recovery of the N and the P from sewage water (하수로부터 질소(N)와 인(P)을 동시에 회수할 수 있는 Mg-Zeolite의 제조)

  • Cho, Heon-Young;Suh, Jung-Mok
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.122-128
    • /
    • 2003
  • To develop a Mg-Zeolite for simultaneous recovery of the N and the P from sewage water, the natural zeolite was treated with 20% $MgCl_2$ solution by changing the pH the temperature and the treating time of the solution. And the contents of Ca Fe Na K Mg of Mg-Zeolite were analyzed by ICP. The optimum treatment condition for Mg-Zeolite was induced to pH 7.0 $50^{\circ}C$ in 20% $MgCl_2$ solution and for 80min treatment. And the Na and the K ions in natural zeolite are significant factors for Mg exchange in the zeolite.

  • PDF

Performance Evaluation of Modified Zeolite with Mg for the Treatment of Dyeing Wastewater (Mg으로 개질한 Zeolite를 이용하여 염색공장 폐수처리 평가)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.392-398
    • /
    • 2015
  • The aim of this study was to investigate the bio-adsorption using modified zeolite with Mg (Mg-zeolite) in the dyeing wastewater treatment. Mg-zeolite adsorbed successfully 100% of the color, suspended solid (SS). chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) in the dyeing wastewater at the following optimal Mg-zeolite loading: 20 mg/L for colour, SS, TN and TP, 30 mg/L for BOD and COD. These results indicated that the amount of 1 mg/L Mg-zeolite adsorbed 11.6 mg/L for color, 9.5 mg/L for SS, 45.0 mg/L for COD, 12.7 mg/L for BOD, 0.91 mg/L for TP and 2.25 mg/L for TN. The bio-adsorbent, Mg-zeolite, can be a promising adsorption due to its high efficiency and low dose requirements.