• 제목/요약/키워드: Zener-Hollomon Parameter(Z)

검색결과 8건 처리시간 0.034초

Al-5wt%Mg 합금의 고온변형특성과 동적재결정 거동에 관한 연구 (A Study on the Hot Deformation Behavior and Dynamic Recrystallization of Al-5wt%Mg Alloy)

  • 황원주;조종래;배원병;강석봉
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.183-189
    • /
    • 1999
  • A numerical analysis was performed to predict flow curves and dynamic recrystallization behaviors of Al-5wt%Mg alloy on the basis of results of hot compression tests. The hot compression tests were carred out in the ranges of 350 ~ 500 ${^\circ}C$ and 5 ${\times}{10^-3}$ ~ 3 ${\times}{10^0}$/sec to obtain the Zener-Hollomon parameter Z. The modelling equation for flow stress was a function of strain, strain rate, temperature. The influence of these variables was quantifield using the Zener-Hollomon parameter. In the modelling equation, the effects of strain hardening and dynamic recrystallization were taken into consideration. Therefore, the modelling stress-strain curves of Al-5wt%Mg alloy were in good agreement with experimental results. Finally, the dynamic recrystallization kinetics were illustrated through the inspection of microstructure after deformation.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향 (The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation)

  • 고병철;김종헌;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

변형가공도를 이용한 AI 5083 합금의 고온변형거동 (High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

304 오스테나이트계 스테인레스강의 고온변형 거동 (High Temperature Deformation Behavior of 304 Stainless Steel)

  • 조상현;김성일;노광섭;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.139-146
    • /
    • 1996
  • The torsion tests in the range of 900~1100$^{\circ}C$ and 5.0X10-2~5.0X100/sec were performed to study the high temperasture deformation behavior kinetics of 304 stainless steels. The flow curves and microstructures exhibited the characteristic of dynamic recrystallization(DRX). The relationship between the critical strain($\varepsilon$c) for the initiation of dynamic recrystallization and the peak strain($\varepsilon$p) could be expressed as $\varepsilon$c=0.73$\varepsilon$p. The dependence of the flow stress on temperature(T) and stain rate($\varepsilon$) was expressed by hyperbolic sine law, $\varepsilon$=2.75X1014 (sinh 0.076$\sigma$)5.26 exp(-379.55kJ/mol). Under the Zener-Hollomon parameter, Z value of 1013 order, it was found that the grain size was 20${\mu}$m. The relationship between the grain size, dDRX and Z parameter was expressed as dDRX =139.48-7.33 log Z.

  • PDF

$SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구 (A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$)

  • 고병철;홍흥기;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

Alloy 690 전열관의 크리프 변형 및 파단 거동 (Creep Deformation and Rupture Behavior of Alloy 690 Tube)

  • 김우곤;김종민;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

AZ31-xCa (x=0, 0.7, 2.0 wt.%) 압출재의 압축변형시 파괴거동 (Fracture Behavior of AZ31-xCa (x=0, 0.7, 2.0 wt.%) Extrudes during Compression)

  • 강나은;임창동;유봉선;박익민
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.85-89
    • /
    • 2010
  • The plastic deformation behavior of magnesium alloy is affected simultaneously by deformation temperature and strain rate under warm and/or hot working conditions. The soundness of deformation of AZ31-xCa (x=0. 0.7, 2.0 wt.%) extrudes during compression was strongly affected by processing variables including deformation temperature, strain rate. compression-loading direction, which was related to the activation of available deformation systems. The deformation behavior of AZ31-xCa extrudes was also affected by Ca content, which was related to the change of the sort and fraction of second phase. The complex effects of deformation temperature and strain rate on the deformation behavior of AZ31-xCa extrudes during compression under various conditions could be successfully described by Zener-Hollomon parameter.