• Title/Summary/Keyword: ZapD

Search Result 4, Processing Time 0.022 seconds

Structural and Biochemical Studies Reveal a Putative FtsZ Recognition Site on the Z-ring Stabilizer ZapD

  • Choi, Hwajung;Min, Kyungjin;Mikami, Bunzo;Yoon, Hye-Jin;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.814-820
    • /
    • 2016
  • FtsZ, a tubulin homologue, is an essential protein of the Z-ring assembly in bacterial cell division. It consists of two domains, the N-terminal and C-terminal core domains, and has a conserved C-terminal tail region. Lateral interactions between FtsZ protofilaments and several Z-ring associated proteins (Zaps) are necessary for modulating Z-ring formation. ZapD, one of the positive regulators of Z-ring assembly, directly binds to the C-terminal tail of FtsZ and promotes stable Z-ring formation during cytokinesis. To gain structural and functional insights into how ZapD interacts with the C-terminal tail of FtsZ, we solved two crystal structures of ZapD proteins from Salmonella typhimurium (StZapD) and Escherichia coli (EcZapD) at a 2.6 and $3.1{\AA}$ resolution, respectively. Several conserved residues are clustered on the concave sides of the StZapD and EcZapD dimers, the suggested FtsZ binding site. Modeled structures of EcZapD-EcFtsZ and subsequent binding studies using bio-layer interferometry also identified the EcFtsZ binding site on EcZapD. The structural insights and the results of bio-layer interferometry assays suggest that the two FtsZ binding sites of ZapD dimer might be responsible for the binding of ZapD dimer to two protofilaments to hold them together.

Biofilm Matrix Regulation by Candida albicans Zap1

  • Nobile, Clarissa J.;Nett, Jeniel E.;Hernday, Aaron D.;Homann, Oliver R.;Deneault, Jean-Sebastien;Nantel, Andre;Andes, David R.;Johnson, Alexander D.;Mitchell1, Aaron P.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.125-125
    • /
    • 2009
  • PDF

Identification and Isolation of Differentially Expressed Gene in Response to Cold Stress in a Green Alga, Spirogyra varians (Zygnematales)

  • Han, Jong-Won;Yoon, Min-Chul;Lee, Key-Pyoung;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2007
  • The expression of genes responding to cold stress in a freshwater alga, Spirogyra varians, was studied by using differential expression gene (DEG) method. A gene strongly up-regulated in 4°C was isolated and designated as SVCR2 (Spirogyra varians cold regulated) gene. The cDNA encoding SVCR2 was cloned using λZAP cDNA library of Spirogyra varians. The deduced amino acid had a sequence similarity with trans-membrane protein in Arabidopsis thaliana (Q9M2D2, 52.7%). Northern blot analysis demonstrated that transcript level of SVCR2 increased about 10 fold under low temperature (4°C), compared with that cultured at warm (20°C) conditions. The expression of SVCR2 was also affected by light conditions. When the plants were exposed to high light (HL) (1200 μmol photon m–2 s–1), the expression of SVCR2 began within 2 hrs. This gene expression lasted for 4 hrs and decreased afterwards. Under the blue light (470 nm) condition, the expression of this gene was induced in same way as HL treatment, even under less than 100 μmol photon m–2 s–1. But red light (650 nm) and UV-A irradiation did not affect the expression of SVCR2.

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.