• 제목/요약/키워드: ZVS-PWM Converter

Search Result 171, Processing Time 0.025 seconds

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

A Novel Three Level DC/DC Converter for High power applications operating from High Input Voltage (대용량 및 높은 입력전압에 적합한 새로운 Three Level DC/DC 컨버터)

  • Han S.K.;Oh W.S.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.317-322
    • /
    • 2003
  • A novel three-level DC/DC converter (TLC)for high power applications operating from high input voltage Is proposed. Its switch voltage stress can be ensured to be only one-half of the Input voltage. Nevertheless, since all input voltage is applied to the transformer primary side, it has good turns ratio. The driving method of each module is same as those of the conventional phase-shifted ZVS full bridge PWM converter (PSFB) and the zero-voltage-switching (ZVS) of the leading leg are achieved exactly in the same manner as that of the PSFB. Moreover, its three-level operation can considerably reduce the current ripple through the output inductor and it has no problems of the DC-link voltage unbalance. Therefore, it features a low voltage stress, high efficiency, low EMI, high power density, and small sized filter. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 200W, 600V/DC-48V/DC prototype are presented.

  • PDF

A Design of PFM/PWM Dual Mode Feedback Based LLC Resonant Converter Controller IC for LED BLU (PFM/PWM 듀얼 모드 피드백 기반 LED BLU 구동용 LLC 공진 변환 제어 IC 설계)

  • Yoo, Chang-Jae;Kim, Hong-Jin;Park, Young-Jun;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • This paper presents a design of LLC resonant converter IC for LED backlight unit based on PFM/PWM dual-mode feedback. Dual output LLC resonant architecture with a single inductor is proposed, where the master output is controlled by the PFM and slave output is controlled by the PWM. To regulate the master output PFM is used as feedback to control the frequency of the power switch. On the other hand, PWM feedback is used to control the pulse width of the power switch and to regulate the slave output. This chip is fabricated in 0.35um 2P3M BC(Bipolar-CMOS-DMOS) Process and the die area is $2.3mm{\times}2.2mm$. Current consumptions is 26mA from 5V supply.

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Saha, Bishwajit;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • This paper presents a new circuit topology of dc bus line switch-assisted half-bridge soft switching PWM inverter type dc-dc converter for arc welder. The proposed power converter is composed of typical voltage source half-bridge high frequency PWM inverter with a high frequency transformer link in addition to dc bus line side power semiconductor switching devices fer PWM control scheme and capacitive lossless snubbers. All the active power switches in the half-bridge arm and dc bus lines can achieve ZCS turn-on and ZVS turn-off commutation operation and consequently the total turn-off switching losses can be significantly reduced. As a result, a high switching frequency of using IGBTs can be actually selected more than about 20 kHz. The effectiveness of this new converter topology is proved for low voltage and large current dc-dc power supplies such as arc welder from a practical point of view.

  • PDF

Low price Fuel Cell Inverter System for 3[KW] Residential Power

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.61-72
    • /
    • 2007
  • This study proposed a high efficiency DC-DC converter with a new current doubler rectifier for fuel-cell systems for use with the Nexa(310-0027) PEMFC from the Ballard Co. The proposed high efficiency DC-DC converter for the fuel-cell system generated ZVS by applying partial resonance and using a phase shift PWM control method. Constantly switching frequency, loss of switching, peak current, and peak voltage were reduced by this system. In addition to this system, two inductors were attached to a rectifier circuit allowing it to be able to provide the direct current(DC) and DC voltage safely to a load with reduced ripple components. Also, by using the newly proposed current doubler rectifier, the high frequency DC-DC converter for the fuel cell system was capable of reaching a highest efficiency of 92[%] as compared to 88.3[%] efficiency in previous results, which means that efficiency increased 3.7[%]. The overall results were confirmed by a simulation and laboratory experiment.

A study on PWM power conversion system by soft switching type using active resonant condenser (액티브 공진 콘덴서를 이용한 소프트 스위칭형 PWM 전력변환기에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.174-176
    • /
    • 2003
  • The power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. This paper proposes a skillful and a concise PWM DC-DC converter employing both zero voltage and zero current high frequency switching(ZVCS) operation. The Proposal ZVCS circuit is composed with resonant circuit using active resonant condenser. And this circuit provides switches with ZVS and ZCS by quasi resonant only that switching transients appear. This operation results in reduction of stress and losses in the power devices and resonant components. Some simulation results are included to confirm the validity of the analytical results.

  • PDF

Three-level Quasi-Resonant PWM Converter (Three-level 의사공진형 PWM 컨버터)

  • Kim, Jae-Hyun;Lee, Il-Woon;Kim, Young-Do;Kim, Jae-Kuk;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.160-161
    • /
    • 2010
  • 본 논문에서 대전력, 고전압에 적합한 three-level 의사공진형 PWM 컨버터를 제안한다. 의사공진형으로 동작함으로써 넓은 ZVS 영역을 가지며, 고정 주파수를 사용하므로 자기 소자의 설계가 쉬워지는 장점을 가진다. 그리고, 변압기에 인가되는 전압 파형의 주파수가 스위칭 주파수의 2배가 되므로 변압기의 크기를 줄 일 수 있고, 변압기 2차측에 출력 인덕터가 없는 전압배가기를 적용하여 정류기 양단에 전압리깅이 발생하지 않아 정류단의 전압 스트레스가 감소되는 장점 또한 가진다. 본 논문에서는 제안한 컨버터을 분석하고, 프로토타입을 통해 그 동작을 검증한다.

  • PDF

Optimized PWM Switching Method for Bidirectional Three-Phase Active Clamped Push-Pull Converter (양방향 3상 능동클램프 푸시풀 컨버터의 최적 PWM 스위칭기법)

  • Han, Kookin;Park, Junsung;Lee, Sanghyuk;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.179-180
    • /
    • 2012
  • 본 논문에서는 3상 양방향 푸시풀 컨버터의 최적 PWM 기법을 제안한다. 제안하는 DAPWM 기법은 모든 스위치 ZVS 턴온을 성취하며 낮은 턴 오프 전류를 갖는 특징이 있다. 또한 동일한 승 강압 게이트 신호 발생 패턴으로 모드전환에 따른 과도상태를 최소로 할 수 있다. 기존 스위칭 방식들과의 성능을 비교하고 5kW급 시작품을 통해 제안한 방식의 타당성 및 성능을 검증하였다.

  • PDF

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.