• 제목/요약/키워드: ZVS-PWM Converter

검색결과 171건 처리시간 0.024초

3상 승압형 AC/DC 컨버터의 고역율과 스위칭 손실 저감을 위한 공진 PWM 스위칭 기법에 관한 연구 (Study on Resonant PWM Switching Technique for $3{\phi}$ Boost AC/DC Converter with High Power Factor and Less Switching Loss)

  • 이은규;노영남;김병진;전희종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.541-543
    • /
    • 1997
  • In this paper, a proposed resonant PWM switching technique makes the boost AC/DC converter to high input power factor and less switching loss. Also, the switching control scheme is used which minimize harmonic components employing novel PWM technique. In addition, an employment of resonant circuit for switching makes zero current switching(ZCS) and zero voltage switching(ZVS) for control switches without switching losses. The result shows that high power factor is still for varying load and switching loss is very low.

  • PDF

액티브 보조 공진 스너버를 이용한 ZVT-PWM AC-DC 컨버터의 실험적 고찰 (The Experimental Consideration of ZVT-PWM AC-DC Converter using Active Auxiliary Resonant Snubber)

  • 서기영;문상필;김주용;박진민
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.75-82
    • /
    • 2004
  • 본 논문에서 액티브 스너버 회로를 가진 영전압 변환 펄스 폭 변조(ZVT-PWM) 컨버터를 제안하였다. 제안된 컨버터는 경부하 상태에서도 동작하며, 영전압 스위칭과 영전류 스위칭 부근에서 온-오프 되며, 주 스위치와 주다이오드에 전압과 전류의 스트레스가 추가적으로 발생하지 않는다. 그리고 보조 스위치와 보조 다이오드의 전압과 전류 허용 레벨을 제시하였다. 제안된 750[W], 80[KHz] PWM 부스터 컨버터는 전 출력 전력에서 소프트 스위칭 컨버터를 적용하여 실행한 결과 주 스위치에서의 손실은 하드 스위칭과 비교해서 약 27[%], 전체 회로 손실은 약 36[%] 저감되었으며, 전체 효율은 기존의 컨버터보다 보다 6{%] 정도 향상됨을 확인하였다.

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

대전력 응용을 위한 새로운 ZVZCS PWM 컨버어터 (New ZVZCS PWM Converter For High Power Application)

  • 류홍제;조정구;유동욱;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.521-524
    • /
    • 1996
  • A new zero voltage and nero current switching(ZVZCS) full bridge(FB) PWM converter b proposed to improve the performance of the previously presented ZVZCS-FB-PWM converters [7,8]. By adding a secondary active clamp and controlling the clamp switch moderately, ZVS(for leading-leg switches) are ZCS(for lagging-leg switches) are achieved without nay lossy components, the reverie avalanche break down of leading-leg IGBTs[7] or the saturable reactor in the primary[8]. Many advantages including simple circuit topology, high efficiency, and low cost mate the new converter attractive for high voltage and high power(> 10 kW) applications. The principle of operation is explained and analyzed. The features and design considerations of the new converter are also illustrated and verified on an 1.8 kW, 100 kHz IGBT based experimental circuit.

  • PDF

Interleaved ZVS DC/DC Converter with Balanced Input Capacitor Voltages for High-voltage Applications

  • Lin, Bor-Ren;Chiang, Huann-Keng;Wang, Shang-Lun
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.661-670
    • /
    • 2014
  • A new DC/DC converter with zero voltage switching is proposed for applications with high input voltage and high load current. The proposed converter has two circuit modules that share load current and power rating. Interleaved pulse-width modulation (PWM) is adopted to generate switch control signals. Thus, ripple currents are reduced at the input and output sides. For high-voltage applications, each circuit module includes two half-bridge legs that are connected in series to reduce switch voltage rating to $V_{in}/2$. These legs are controlled with the use of asymmetric PWM. To reduce the current rating of rectifier diodes and share load current for high-load-current applications, two center-tapped rectifiers are adopted in each circuit module. The primary windings of two transformers are connected in series at the high voltage side to balance output inductor currents. Two series capacitors are adopted at the AC terminals of the two half-bridge legs to balance the two input capacitor voltages. The resonant behavior of the inductance and capacitance at the transition interval enable MOSFETs to be switched on under zero voltage switching. The circuit configuration, system characteristics, and design are discussed in detail. Experiments based on a laboratory prototype are conducted to verify the effectiveness of the proposed converter.

새로운 하프 브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발 (Development of DC-DC Converter for Arc Welding Machines using A Novel Half Bridge Soft Switching PWM Inverter)

  • 권순걸;문상필
    • 전자공학회논문지SC
    • /
    • 제45권4호
    • /
    • pp.60-67
    • /
    • 2008
  • 본 연구에서는 일반적으로 용접기의 전원장치로 사용되어지는 풀-브리지 회로에 2개의 스위치와 2개의 무손실 스너버 부분 공진 커패시터, 2개의 다이오드로 구성된 간단한 액티브 보조 부분 공진 스너버를 추가한 새로운 하프 브리지 소프트 스위칭 PWM DC-DC 컨버터를 제안하였다. 제안한 하프 브리지 소프트 스위칭 DC-DC 컨버터 회로는 기존 회로의 DC 버스라인 스위치에 발생되는 도통 손실을 저감하여 고주파 변압기의 1차측의 전류가 2차측보다 작아지는 저 전압, 대전류 직류출력을 얻어 수 있었다. 그리고, 모든 영역에서 ZCS/ZVS 동작하므로써 저전압, 대전류 직류 출력의 스위칭 전원 장치에 있어 고주파, 고효율, 고출력을 실현할 수 있다. 이러한 모든 사항은 시뮬레이션과 실험 결과로부터 도출하였으며, 제안한 회로의 단점을 보완할 경우에는 차세대형 TIG MIG MAG 아크 용접기용 전원으로 용이할 것으로 판단된다.

위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구 (A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter)

  • 조한진;이원철;이상석;김태환;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

ZVS과 ZCS을 이용한 BUCK-BOOST콘버어터의 제어방식과 동작특성에 관한 연구 (Study on the control method and operation characteristics of BUCK-BOOST Converter for ZVS and ZCS)

  • 김현수;박성준;변영복;권순재;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.195-197
    • /
    • 1995
  • In this paper, for a constant switching frequency, the configuration and the control strategy of the resonant buck-boost type converter are proposed by the combination of zero voltage switching(ZVS) and zero current switching(ZCS) with PWM method. Also, in the configuration of power control circuit, transformer is not used in the viewpoint of economy. And the circuit has fewer power switching elements than a general resonant power converter, simulation results and experiments make show the advantages mentioned.

  • PDF

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Analysis, Design, and Implementation of a Zero-Voltage-Transition Interleaved Boost Converter

  • Ting, Naim Suleyman;Sahin, Yakup;Aksoy, Ismail
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.41-55
    • /
    • 2017
  • This study proposes a novel zero voltage transition (ZVT) pulse width modulation (PWM) DC-DC interleaved boost converter with an active snubber cell. All the semiconductor devices in the converter turn on and off with soft switching to reduce the switching power losses and improve the overall efficiency. Through the interleaved approach, the current stresses of the main devices and the ripple of the output voltage and input current are reduced. The main switches turn on with ZVT and turn off with zero voltage switching (ZVS). The auxiliary switch turns on with zero current switching (ZCS) and turns off with ZVS. In addition, the snubber cell does not create additional current or voltage stress on the main switches and main diodes. The proposed converter can smoothly achieve soft switching characteristics even under light load conditions. The theoretical analysis and operating stages of the proposed converter are made for the D > 50% and D < 50% modes. Finally, a prototype of the proposed converter is implemented, and the experimental results are given in detail for 500 W and 50 kHz. The overall efficiency of the proposed converter reached 95.5% at nominal output power.