• Title/Summary/Keyword: ZF receivers

Search Result 11, Processing Time 0.022 seconds

Sum-Rate Analysis for 3D MIMO with ZF Receivers in Ricean/Lognormal Fading Channels

  • Tan, Fangqing;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2371-2388
    • /
    • 2015
  • In this paper, we investigate the performance evaluation of three dimensional (3D) multiple-input multiple-output (MIMO) systems with an adjustable base station (BS) antenna tilt angle and zero-forcing (ZF) receivers in Ricean/Lognormal fading channels. In particular, we take the lognormal shadow fading, 3D antenna gain with antenna tilt angle and path-loss into account. First, we derive a closed-form lower bound on the sum rate, then we obtain the optimal BS antenna tilt angle based on the derived lower bound, and finally we present linear approximations for the sum rate in high and low-SNR regimes, respectively. Based on our analytical results, we gain valuable insights into the impact of key system parameters, such as the BS antenna tilt angle, the Ricean K-factor and the radius of cell, on the sum rate performance of 3D MIMO with ZF receivers.

An MCS Level Adaptive Linear Receiver (MCS 레벨에 따른 적응 선형 수신기)

  • Lee, Kyuhee;Kim, Jaekwon;Yun, Sangkyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • In this paper, a novel low complexity linear receiver is proposed that is used at the receiver of MIMO systems. Zero-forcing (ZF) and minimum mean squared error (MMSE) receivers are common linear receivers. ZF receiver is simpler than MMSE receiver from the hardware implementation perspective, howerver, MMSE shows better performance than ZF. In general, MCS level changes according to channel condition. This paper shows the benefit of choosing between MMSE and ZF according to the selected MCS level. We implement the MCS-adaptive linear receiver as hardware, and show that its complexity is comparable to the conventional MMSE receiver.

  • PDF

Performance Analysis for Spatial Multiplexing MIMO in MB-OFDM UWB Receivers (MB-OFDM UWB 시스템에서 공간 다중화 MIMO 수신기의 성능 분석)

  • Suh, Jung-Won;Kwon, Yang-Soo;Kim, Seok-Hyeon;Chung, Jea-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.121-129
    • /
    • 2008
  • This paper presents the spatial multiplexing MIMO system to increase data rate to double in MB-OFDM UWB system, which is ECMA standards, and compares BER performance of various receiver structures. The complexity and BER performance of various types of spatial multiplexing receivers are compared and analyzed using diagonal and horizontal encoding techniques for $2{\times}2$\;and\;2{\times}3$ antennas systems. Computer simulations exhibit that $2{\times}2$ MML and $2{\times}3$ ZF method show better BER performance than that of SISO system with simple complexity.

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Prior Maximum Likelihood Detection Verifier Design in MIMO Receivers (MIMO 수신기에서 사전 Maximum Likelihood 검파 검증기 설계)

  • Jeon, Hyoung-Goo;Bae, Jin-Ho;Lee, Dong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper proposes a prior maximum likelihood (ML) detection verifier which has an ability to verify if the zero forcing (ZF) detection results are identical to the ML detection results. Since more than 90% of ZF detection results are identical to ML detection results, the proposed verifier makes it possible to omit the computationally complex ML detection in 90% cases of MIMO signal detections. The proposed verifier is designed by using the diversity gain obtained from converting MIMO signal into single input multiple output (SIMO) signals. In the proposed method, single input multiple output (SIMO) signals for each transmit antenna are separated from MIMO signals after the MIMO signals are detected by ZF method. Computer simulations show that the true alarm probability of the proposed verifier is more than 80% and the false alarm probability is less than $10^{-4}$.

Error Performance of UWB-MIMO system according to channel detection methods (UWB-MIMO 시스템에서 채널 검파 방식에 따른 성능 비교분석)

  • Kang, Yun-Jeong;Baek, Sun-Young;Kim, Sang-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.113-114
    • /
    • 2008
  • In this paper, binary pulse-position modulation (2PPM) time-hoping (TH) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications. This UWB-MIMO system and its receivers are analyzed, and its BER performances are evaluated. In the receiver, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels (높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법)

  • Moon, Sung-Hyun;Kim, Jin-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.223-231
    • /
    • 2011
  • It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Signal Detection with Sphere Decoding Algorithm at MIMO Channel (MIMO채널에서 Sphere Decoding 알고리즘을 이용한 신호검파)

  • An, Jin-Young;Kang, Yun-Jeong;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2197-2204
    • /
    • 2009
  • In this paper, we analyze the performance of the sphere decoding algorithm at MIMO system. The BER performance of this algorithm is the same as that of ML receiver, but computational complexity of SD algorithm is much less than that of ML receiver. The independent signals from each transmit antennas are modulated by using the QPSK and 16QAM modulation in the richly scattered Rayleigh flat-fading channel. The received signals from each receivers is independently detected by the receiver using Fincke & Pohst SD algorithm, and the BER output of the algorithm is compared with those of ZF, MMSE, SIC, and ML receivers. We also investigate the Viterbo & Boutros SD algorithm which is the modified SD algorithm, and the BER performance and the floting point operations of the algorithms are comparatively studied.

A Study on the Efficient Interference Cancellation for Multi-hop Relay Systems (다중 홉 중계 시스템에서 효과적인 간섭 제거에 관한 연구)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Kim, Seong-Kweon;Lee, Jong-Joo;Kim, Jin-Young;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2009
  • The transmitted signal from a source is transmitted to a destination through wireless channels. But if the mobile destination is out of the coverage of the source or exists in the shady side of the coverage, the destination can not receiver the signal from the source and they can not maintain communication. In order to overcome these problems, we adopt relays. A system employing relays is a multi-hop relay system. In the multi-hop relay system, coverages of each relay that is used for different systems can overlap each other in some place. When there is a destination in this place, interference occurs at the destination. In this paper, we study on the efficient co-channel interference (CCI) cancellation algorithm. In the proposed strategy, CCI is mitigated by zero forcing (ZF) or minimum mean square error (MMSE) receivers. Moreover, successive interference cancellation (SIC) with optimal ordering algorithm is applied for rejecting CCI efficiently. And we analyzed and simulated the proposed system performance in Rayleigh fading channel. In order to justify the benefit of the proposed strategy, the overall system performance is illustrated in terms of bit error probability.

  • PDF