• 제목/요약/키워드: ZF 집합론

검색결과 3건 처리시간 0.015초

집합론의 무모순성

  • 여운도;황동주
    • 한국수학사학회지
    • /
    • 제9권2호
    • /
    • pp.30-42
    • /
    • 1996
  • 최근 <수학기초론>이란 용어는 Burali-Forti paradox 이후 족(class)과 집합(set) 개념을 이해하려는 시도에서 출발한 20세기적 문제에 적용되고 있다. 이 글에서는 그 해결책으로 제시된 주의ㆍ주장 중 논리적인 모순을 해결하기 위한 Russel의 논리주의적 공리론에 바탕을 두고 살펴보려고 한다. 제 2장에서는 무한의 심연 속에 웅크리고 있는 집합론에서의 역설과 발생 원인에 대하여 살펴보았다. 제 3장에서는 공리론적 집합론 중에서 러셀의 유형론과 그것을 단순화시킨 현대의 유형론을 살펴보고, ZF 집합론과 ZF 집합론의 연장인 처치 집합론의 기본 공리를 살펴보았다.

  • PDF

A reconstruction of the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory

  • 최창순
    • 한국수학사학회지
    • /
    • 제24권3호
    • /
    • pp.59-76
    • /
    • 2011
  • NBG의 공리들을 충족시키는 모델로서의 집합 V 를 도입하고 그것의 요소들을 sets라 부르고 그것의 부분집합들을 classes라 부른다. 일반연속체가설 (GCH) 와 선택공리 (AC) 가 ZF 집합론과 무모순이라는 것에 대한 괴델의 증명을 그 이후 나온 Mostowski-Shepherdson mapping 정리, Tarski-Vaught 정리 및 Montague-Levy 정리의 반사원리들, NBG가 ZF의 보존적 확장이라는 정리 등을 이용하여 재구성해 본다.