• Title/Summary/Keyword: ZCZ code

Search Result 5, Processing Time 0.019 seconds

Mutual Interference-resilient Vehicular Spread Spectrum Radar Using ZCZ Code (ZCZ 부호를 이용한 상호간섭에 강인한 차량용 확산대역 레이더 방식)

  • Kim, Bong-seok;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • We propose vehicular spread spectrum (SS) radar robust to mutual interference using zero correlation zone (ZCZ) code. SS radar schemes have been employed for vehicular radar systems due to their outstanding correlation property. However, this superiority is based on a premise that timing among codes is completely synchronized. In the practical driving environment, timing mismatch among radar signals is inevitable because the radar signals of several vehicles are independently transmitted at each different location and each timing and thus each radar signal is received at different timing. This timing offset is the main cause of orthogonality destruction among codes and thus radar signals from other vehicles become mutual interference. In order to solve this problem, we find out the new property of ZCZ code which maintains the complete orthogonality except to timing offset corresponding to chips (pulses) of multiple of 4 and employ ZCZ code to SS radar systems. Simulation results show the proposed scheme achieve better performance compared with the conventional SS radar scheme using pseudo code or gold code.

Analysis of Spreading code design for Zero Correlation Zone (ZCZ 확산부호 설계 및 분석)

  • Hou, Jia;Park, Ju-Yong;Hwang, Gi-Yean;Lee, Moon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.733-738
    • /
    • 2002
  • Zero Cross-correlation Zone (ZCZ) code has a good performance in Multi-user CDMA system to get low correlation zone and reject co-channel interference. In this paper, we do analysis of spreading code design to obtain this kind of property of correlations with a complex spreading scheme and denote their effective performance for mobile communication system. In addition, a Jacket polyphase sequence is an example to show the improved performance and regular properties effective performance for mobile communication system. In addition, a Jacket polyphase sequence is as an example to show the improved performance and regular properties.

Allowing a Large Access Timing Offset in OFDM-CDMA Using ZCZ Code and Block Spreading (ZCZ 부호와 블록 확산을 이용한 사용자 동기화 경감 OFDM-CDMA)

  • Na, Donj-jun;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.23-36
    • /
    • 2016
  • We propose a new type of OFDM-CDMA scheme which allows large inter-user timing offset using zero correlation zone(ZCZ) code in conjunction with block spreading technique. Moreover to maximize spectral efficiency, the proposed OFDMA does not have guard time(GT). This is opposite to the trends in the conventional schemes where GT are supposed to be larger to allow larger inter-user timing offset. It is remarkable that the proposed GT-free OFDM-CDMA scheme completely cancels inter-user interference in the multipath fading simply by despreading process. This inter-user interference-free feature still remains even there exist inter-user timing offsets as large as multiple OFDM symbols. Although the self-user interference exists due to no GT, it can be effectively suppressed by simple successive interference cancellation(SIC) from the first symbol in spread block as it is free from inter symbol interference(ISI).

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Access timing offsets-resilient SC-FDMA (접속동기 오차에 강한 SC-FDMA 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.26-29
    • /
    • 2012
  • In this paper, we propose a Single Carrier Frequency Division Multiple Access(SC-FDMA) scheme with greatly enhanced tolerance of timing offset among the users. The type of the proposed scheme is similar to code spread Multiple Carrier Direct Spread Code Division Multiple Access(MC DS CDMA). The proposed scheme performs partial Discrete Fourier Transform(DFT) in order to solve high Peak to Average Power Ratio(PAPR) of the MC DS CDMA before Inverse Fast Fourier Transform(IFFT). Exploiting the property Properly Scrambled Walsh-Hadamard(PSW) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed scheme achieves Multiple Access Interference free performance with the timing offset up to ${\pm}1$ OFDM symbol duration with low PAPR. In contrast, the other existing schemes in comparison undergo severe performance degradation even with small timing offset in multipath fading channel.