• 제목/요약/키워드: Z. Cao's fuzzy inference method

검색결과 4건 처리시간 0.018초

학습기능을 이용한 Z. Cao의 퍼지추론방식 (Z. Cao's Fuzzy Reasoning Method using Learning Ability)

  • 박진현;이태환;최영규
    • 한국정보통신학회논문지
    • /
    • 제12권9호
    • /
    • pp.1591-1598
    • /
    • 2008
  • 과거 Z. Cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지추론방식에 비하여 좋은 성능을 보였다. 그러나 정밀한 추론을 위하여 relation maoix는 시행착오법을 사용하여 구하고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사용한 학습기능을 갖는 Z. Cao의 퍼지추론 방식을 제안하고자 한다. 모의실험은 비선형 시스템에 적용하여 제안된 추론방식이 좋은 성능을 나타냄을 보였다.

학습기능을 사용한 Z. Cao의 퍼지추론방식 (Z. Cao's Fuzzy Reasoning Method using Learning Ability)

  • 박진현;이태환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.193-196
    • /
    • 2008
  • 과거 Z. cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지추론방식에 비하여 좋은 성능을 보였다. 그러나 정밀한 추론을 위하여 relation matrix는 시행착오법을 사용하여 구하고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사유한 학습기능을 갖는 Z. Cao의 퍼지추론 방식을 제안하고자 한다.

  • PDF

학습기능을 사용한 MIMO 퍼지추론 방식 (MIMO Fuzzy Reasoning Method using Learning Ability)

  • 박진현;이태환;최영규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.175-178
    • /
    • 2008
  • Z. cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지추론 방식에 비하여 좋은 성능을 보였다. 그러나 대부분의 퍼지스템의 경우, MIMO 시스템에 적용시 피지추론규칙을 도출해 내기 힘들고 많은 규칙의 수가 요구되는 단점을 갖는다. 그러므로 본 연구자에 의하여 과거에 Z. Cao's의 퍼지추론 방법을 MIMO 시스템으로 확장된 MIMO 퍼지추론 방식을 제안하였다. 본 연구에서는 제안된 퍼지추론 방식의 relation matrix를 시행착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사용한 학습기능을 갖는 MIMO 퍼지추론 방식을 제안하고자 한다. 모의실험은 2축 로봇의 역기구학 문제를 푸는데 적용하여 제안된 추론방식이 좋은 성능을 보였다.

  • PDF

학습기능을 갖는 MIMO 퍼지시스템에 관한 연구 (A study of MIMO Fuzzy system with a Learning Ability)

  • 박진현;배강열;최영규
    • 한국정보통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.505-513
    • /
    • 2009
  • Z. cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지 추론방식에 비하여 좋은 성능을 보였다. 그러나 대부분의 퍼지스템의 경우, MIMO 시스템에 적용 시 퍼지 추론규칙을 도출해 내기 힘들고 많은 규칙의 수가 요구되는 단점을 갖는다. 그러므로 본 연구자에 의하여 과거에 Z. Cao's의 퍼지 추론방법을 MIMO 시스템으로 확장된 MIMO 퍼지추론 방식이 제안되었다. 그러나 정밀한 추론을 위하여 relation matrix는 휴리 스틱 (heuristic)한 방법이나 시행착오법을 사용하여 구하였고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행 착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사용한 학습기 능을 갖는 MIMO 퍼지추론 방식을 제안하고자 한다. 모의실험은 2축 로봇의 역기구학 문제를 푸는데 적용하여 제안된 추론방식이 좋은 성능을 보였다.