• Title/Summary/Keyword: Z. Cao's fuzzy inference method

Search Result 4, Processing Time 0.021 seconds

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.193-196
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose 2. Cao's fuzzy inference method using learning ability witch is used a gradient descent method in order to improve the performances. Because it is difficult to determine the relation matrix elements by trial and error method which is needed many hours and effort. Simulation results are applied linear and nonlinear system show that the proposed inference method has good performances.

  • PDF

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.