• 제목/요약/키워드: Z-DNA

검색결과 318건 처리시간 0.03초

Contribution of Counterion Entropy to the Salt-Induced Transition Between B-DNA and Z-DNA

  • Lee, Youn-Kyoung;Lee, Juyong;Choi, Jung Hyun;Seok, Chaok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3719-3726
    • /
    • 2012
  • Formation of Z-DNA, a left-handed double helix, from B-DNA, the canonical right-handed double helix, occurs during important biological processes such as gene expression and DNA transcription. Such B-Z transitions can also be induced by high salt concentration in vitro, but the changes in the relative stability of B-DNA and Z-DNA with salt concentration have not been fully explained despite numerous attempts. For example, electrostatic effects alone could not account for salt-induced B-Z transitions in previous studies. In this paper, we propose that the B-Z transition can be explained if counterion entropy is considered along with the electrostatic interactions. This can be achieved by conducting all-atom, explicit-solvent MD simulations followed by MM-PBSA and molecular DFT calculations. Our MD simulations show that counterions tend to bind at specific sites in B-DNA and Z-DNA, and that more ions cluster near Z-DNA than near B-DNA. Moreover, the difference in counterion ordering near B-DNA and Z-DNA is larger at a low salt concentration than at a high concentration. The results imply that the exclusion of counterions by Z-DNA-binding proteins may facilitate Z-DNA formation under physiological conditions.

How Z-DNA/RNA binding proteins shape homeostasis, inflammation, and immunity

  • Kim, Chun
    • BMB Reports
    • /
    • 제53권9호
    • /
    • pp.453-457
    • /
    • 2020
  • The right-handed double-helical structure of DNA (B-DNA), which follows the Watson-Crick model, is the canonical form of DNA existing in normal physiological settings. Even though an alternative left-handed structure of DNA (Z-DNA) was discovered in the late 1970s, Z-form nucleic acid has not received much attention from biologists, because it is extremely unstable under physiological conditions, has an ill-defined mechanism of its formation, and has obscure biological functions. The debate about the physiological relevance of Z-DNA was settled only after a class of proteins was found to potentially recognize the Z-form architecture of DNA. Interestingly, these Z-DNA binding proteins can bind not only the left-handed form of DNA but also the equivalent structure of RNA (Z-RNA). The Z-DNA/RNA binding proteins present from viruses to humans function as important regulators of biological processes. In particular, the proteins ADAR1 and ZBP1 are currently being extensively re-evaluated in the field to understand potential roles of the noncanonical Z-conformation of nucleic acids in host immune responses and human disease. Despite a growing body of evidence supporting the biological importance of Z-DNA/RNA, there remain many unanswered principal questions, such as when Z-form nucleic acids arise and how they signal to downstream pathways. Understanding Z-DNA/RNA and the sensors in different pathophysiological conditions will widen our view on the regulation of immune responses and open a new door of opportunity to develop novel types of immunomodulatory therapeutic possibilities.

Specific Recognition of Unusual DNA Structures by Small Molecules: An Equilibrium Binding Study

  • Suh, Dong-Chul
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 1996
  • The binding interaction of ethidium to a series of synthetic deoxyoligonucleotides containing a B-Z junction between left-handed Z-DNA and right-handed B-DNA, was studied. The series of deoxyoligonucleotides was designed so as to vary a dinucleotide step immediately adjacent to a B-Z junction region. Ethidium binds to the right-handed DNA forms and hybrid B-Z forms which contain a B-Z junction, in a highly cooperative manner. In a series of deoxyoligonucleotides, the binding affinity of ethidium with DNA forms which were initially hybrid B-Z forms shows over an order of magnitude higher than that with any other DNA forms, which were entirely in B-form DNA The cooperativity of binding isotherms were described by an allosteric binding model and by a neighbor exclusion model. The binding data were statistically compared for two models. The conformation of allosterically converted DNA forms under binding with ethidium is found to be different from that of the initial B-form DNA as examined by CD spectra. The ratio of the binding constant was interestingly correlated to the free energy of base unstacking and the conformational conversion of the dinucleotide. The more the base stacking of the dinucleotide is unstable, or the harder the conversion of B to A conformation, the higher the ratio of the binding constant of ethidium with the allosterically converted DNA forms and with the initial B-Z hybrid forms. DNA sequence around a B-Z junction region affects the binding affinity of ethidium. The results in this study demonstrate that ethidium could preferentially interact with unusual DNA structures.

  • PDF

NMR Study on the Preferential Binding of the Zα Domain of Human ADAR1 to CG-repeat DNA Duplex

  • Lee, Ae-Ree;Choi, Seo-Ree;Seo, Yeo-Jin;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제21권3호
    • /
    • pp.90-95
    • /
    • 2017
  • The Z-DNA domain of human ADAR1 ($Z{\alpha}_{ADAR1}$) produces B-Z junction DNA through preferential binding to the CG-repeat segment and destabilizing the neighboring AT-rich region. However, this study could not answer the question of how many base-pairs in AT-rich region are destabilized by binding of $Z{\alpha}_{ADAR1}$. Thus, we have performed NMR experiments of $Z{\alpha}_{ADAR1}$ to the longer DNA duplex containing an 8-base-paired (8-bp) CG-repeat segment and a 12-bp AT-rich region. This study revealed that $Z{\alpha}_{ADAR1}$ preferentially binds to the CG-repeat segment rather than AT-rich region in a long DNA and then destabilizes at least 6 base-pairs in the neighboring AT-rich region for efficient B-Z transition of the CG-repeat segment.

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Optimization of the 32P-postlabeling Assay for Detecting Benzo(a)pyrene-induced DNA Adduct Formation in Zacco platypus

  • Lee, Jin Wuk;Lee, Sung Kyu
    • 한국환경보건학회지
    • /
    • 제40권1호
    • /
    • pp.55-62
    • /
    • 2014
  • Objectives: $^{32}P$-postlabeling assay is the most sensitive method of detecting DNA adduct formation. However, it is limited by a low sample throughput and use of radioisotopes (RI). In this study, we modified it to minimize these limitations and applied it to Z. platypus exposed to Benzo(a)pyrene (BaP) in order to investigate DNA adduct formation (effect biomarker for pollutants) in Z. platypus for assessing risk of waterborne BaP exposure. Methods: DNA hydrolysis was performed only with Micrococcal nuclease (MNase), RI reduction test was performed and the overlapping steps between thin layer chromatography (TLC) and radioisotope high-performance liquid chromatography (RI-HPLC) were omitted. The application of a modified method to Z. platypus exposed to BaP was performed. Results: The results revealed that the amount of RIs used can be reduced roughly 10-fold. Because the analysis time was shortened by 8.5 hours, the sample throughput per hour was increased compared with the previous method. The results of applying modified $^{32}P$-postlabeling assay to Z. platypus, DNA adduct formation in Z. platypus showed dose-dependency with the BaP concentration. Only BPDE-dGMP was detected as a DNA adduct. Conclusion: These results demonstrate that the modified $^{32}P$-postlabeling assay is a suitable method for detecting DNA adduct formation in Z. platypus exposed to waterborne BaP and will be useful in risk assessment of carcinogenic effect in aquatic environment due to BaP.

Survey of the Expression Pattern and Immuno Stimulatory Effect of DNA Vaccine Using β-Galactosidase Reporter System in Olive Flounder (Paralichthys olivaceus)

  • Lee Sang-Jun;Hong Suhee;An Kyong-Jin;Kim Young-Ok
    • Fisheries and Aquatic Sciences
    • /
    • 제7권2호
    • /
    • pp.70-75
    • /
    • 2004
  • The CMV promoter driven lacZ reporter gene (pcDNA-lacZ) was constructed and used for DNA immunization study. The expression of the lacZ gene was confirmed in vitro using RTG-2 cell line before using for in vivo study in olive flounder (Paralichthys olivaceus). In the dose response study, the maximum expression of the lacZ gene was found in the group injected with 5 ${\mu} g$ of the plasmid DNA. Kinetic study showed a significantly increased expression of $\beta-galactosidase$ gene at 7 days after injection. Effects of DNA vaccine on specific and nonspecific immune responses such as antibody and NO production were studied and the significant effect was found in olive flounder injected with 10 and 15 ${\mu} g$ DNA (sub optimal dose for lacZ gene expression). Two pro inflammatory cytokine genes, $IL-l\beta$ and $TNF-\alpha$, were also found to be up regulated in the muscle injected with the plasmid, suggesting an induction of local inflammatory response.

Engineering lacZ Reporter Gene into an ephA8 Bacterial Artificial Chromosome Using a Highly Efficient Bacterial Recombination System

  • Kim, Yu-Jin;Song, Eun-Sook;Choi, Soon-Young;Park, Soo-Chul
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.656-661
    • /
    • 2007
  • In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.

ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별 (Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS)

  • 홍민지;양대화;정옥철;김양지;박미영;강홍규;선현진;권용익;박신영;양바오로;송필순;고석민;이효연
    • 원예과학기술지
    • /
    • 제35권3호
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysia 속 잔디는 학교운동장 및 공원, 골프장, 스포츠경기장과 같이 다양한 장소에 식재되고 있는 중요한 잔디이다. 해안가에서 자생하는 Zoysia 속 들잔디와 갯잔디는 외부 형태적 특성이 유사하여 외부 형태적 분류 뿐 만 아니라 분자생물학적 분류도 필요하다. 본 연구에서는 nrDNA-ITS(Internal Transcribed Spacer)의 DNA 바코드 분석을 통해서 자생하는 들잔디와 갯잔디의 분자생물학적 신속한 분류체계를 확립하고자 하였다. 이를 위해 난지형 잔디인 Zoysia 속 들잔디(Z. japonica) 및 갯잔디(Z. sinica)와 한지형 대표 잔디인 크리핑 벤트그라스(A. stolonifera) 및 켄터키 블루그라스(P. pratensis)의 nrDNA-ITS 염기서열을 확보하였다. 확보된 들잔디및 갯잔디, 크리핑 벤트그라스, 켄터키 블루그라스의 ITS 염기서열 전체 구간은 각 686bp와 687bp, 683bp, 681bp으로 확인되었으며, nrDNA-ITS 내부 염기서열구간 분석 결과, ITS1의 크기는 248-249bp, ITS2는 270̵-274bp, 5.8S rDNA는 163-164bp의 차이로, 각 4종의 잔디가 ITS 염기서열을 이용하여 식별되었다. 특히, 들잔디와 갯잔디 nrDNA-ITS 염기서열은 19 염기(2.8%) 차이를 나타냈으며, ITS1과 ITS2의 G + C 함량은 55.4-63.3% 임을 확인하였다. 이러한 들잔디와 갯잔디의 ITS 염기서열 차이를 바탕으로 CAPS 마커로 전환하여 대조구 및 수집된 자생 Zoysia 속 잔디 영양체 62개체를 분석한 결과, 외부형태학적 분류법으로 들잔디 개체, 갯잔디 개체로 동정되었지만, ITSCAPS 마커를 이용한 분자생물학적 분류법으로 들잔디 36개체와 갯잔디 22개체 뿐만 아니라 들잔디와 갯잔디간의 자연교배종 4개체도 식별하였다. 이상의 결과에서 들잔디와 갯잔디는 ITS 염기서열 및 ITS 기반 CAPS를 통하여 식별할 수 있을 것으로 판단된다.