• Title/Summary/Keyword: Z-DNA

Search Result 318, Processing Time 0.028 seconds

Contribution of Counterion Entropy to the Salt-Induced Transition Between B-DNA and Z-DNA

  • Lee, Youn-Kyoung;Lee, Juyong;Choi, Jung Hyun;Seok, Chaok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3719-3726
    • /
    • 2012
  • Formation of Z-DNA, a left-handed double helix, from B-DNA, the canonical right-handed double helix, occurs during important biological processes such as gene expression and DNA transcription. Such B-Z transitions can also be induced by high salt concentration in vitro, but the changes in the relative stability of B-DNA and Z-DNA with salt concentration have not been fully explained despite numerous attempts. For example, electrostatic effects alone could not account for salt-induced B-Z transitions in previous studies. In this paper, we propose that the B-Z transition can be explained if counterion entropy is considered along with the electrostatic interactions. This can be achieved by conducting all-atom, explicit-solvent MD simulations followed by MM-PBSA and molecular DFT calculations. Our MD simulations show that counterions tend to bind at specific sites in B-DNA and Z-DNA, and that more ions cluster near Z-DNA than near B-DNA. Moreover, the difference in counterion ordering near B-DNA and Z-DNA is larger at a low salt concentration than at a high concentration. The results imply that the exclusion of counterions by Z-DNA-binding proteins may facilitate Z-DNA formation under physiological conditions.

How Z-DNA/RNA binding proteins shape homeostasis, inflammation, and immunity

  • Kim, Chun
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.453-457
    • /
    • 2020
  • The right-handed double-helical structure of DNA (B-DNA), which follows the Watson-Crick model, is the canonical form of DNA existing in normal physiological settings. Even though an alternative left-handed structure of DNA (Z-DNA) was discovered in the late 1970s, Z-form nucleic acid has not received much attention from biologists, because it is extremely unstable under physiological conditions, has an ill-defined mechanism of its formation, and has obscure biological functions. The debate about the physiological relevance of Z-DNA was settled only after a class of proteins was found to potentially recognize the Z-form architecture of DNA. Interestingly, these Z-DNA binding proteins can bind not only the left-handed form of DNA but also the equivalent structure of RNA (Z-RNA). The Z-DNA/RNA binding proteins present from viruses to humans function as important regulators of biological processes. In particular, the proteins ADAR1 and ZBP1 are currently being extensively re-evaluated in the field to understand potential roles of the noncanonical Z-conformation of nucleic acids in host immune responses and human disease. Despite a growing body of evidence supporting the biological importance of Z-DNA/RNA, there remain many unanswered principal questions, such as when Z-form nucleic acids arise and how they signal to downstream pathways. Understanding Z-DNA/RNA and the sensors in different pathophysiological conditions will widen our view on the regulation of immune responses and open a new door of opportunity to develop novel types of immunomodulatory therapeutic possibilities.

Specific Recognition of Unusual DNA Structures by Small Molecules: An Equilibrium Binding Study

  • Suh, Dong-Chul
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The binding interaction of ethidium to a series of synthetic deoxyoligonucleotides containing a B-Z junction between left-handed Z-DNA and right-handed B-DNA, was studied. The series of deoxyoligonucleotides was designed so as to vary a dinucleotide step immediately adjacent to a B-Z junction region. Ethidium binds to the right-handed DNA forms and hybrid B-Z forms which contain a B-Z junction, in a highly cooperative manner. In a series of deoxyoligonucleotides, the binding affinity of ethidium with DNA forms which were initially hybrid B-Z forms shows over an order of magnitude higher than that with any other DNA forms, which were entirely in B-form DNA The cooperativity of binding isotherms were described by an allosteric binding model and by a neighbor exclusion model. The binding data were statistically compared for two models. The conformation of allosterically converted DNA forms under binding with ethidium is found to be different from that of the initial B-form DNA as examined by CD spectra. The ratio of the binding constant was interestingly correlated to the free energy of base unstacking and the conformational conversion of the dinucleotide. The more the base stacking of the dinucleotide is unstable, or the harder the conversion of B to A conformation, the higher the ratio of the binding constant of ethidium with the allosterically converted DNA forms and with the initial B-Z hybrid forms. DNA sequence around a B-Z junction region affects the binding affinity of ethidium. The results in this study demonstrate that ethidium could preferentially interact with unusual DNA structures.

  • PDF

NMR Study on the Preferential Binding of the Zα Domain of Human ADAR1 to CG-repeat DNA Duplex

  • Lee, Ae-Ree;Choi, Seo-Ree;Seo, Yeo-Jin;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.90-95
    • /
    • 2017
  • The Z-DNA domain of human ADAR1 ($Z{\alpha}_{ADAR1}$) produces B-Z junction DNA through preferential binding to the CG-repeat segment and destabilizing the neighboring AT-rich region. However, this study could not answer the question of how many base-pairs in AT-rich region are destabilized by binding of $Z{\alpha}_{ADAR1}$. Thus, we have performed NMR experiments of $Z{\alpha}_{ADAR1}$ to the longer DNA duplex containing an 8-base-paired (8-bp) CG-repeat segment and a 12-bp AT-rich region. This study revealed that $Z{\alpha}_{ADAR1}$ preferentially binds to the CG-repeat segment rather than AT-rich region in a long DNA and then destabilizes at least 6 base-pairs in the neighboring AT-rich region for efficient B-Z transition of the CG-repeat segment.

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Optimization of the 32P-postlabeling Assay for Detecting Benzo(a)pyrene-induced DNA Adduct Formation in Zacco platypus

  • Lee, Jin Wuk;Lee, Sung Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • Objectives: $^{32}P$-postlabeling assay is the most sensitive method of detecting DNA adduct formation. However, it is limited by a low sample throughput and use of radioisotopes (RI). In this study, we modified it to minimize these limitations and applied it to Z. platypus exposed to Benzo(a)pyrene (BaP) in order to investigate DNA adduct formation (effect biomarker for pollutants) in Z. platypus for assessing risk of waterborne BaP exposure. Methods: DNA hydrolysis was performed only with Micrococcal nuclease (MNase), RI reduction test was performed and the overlapping steps between thin layer chromatography (TLC) and radioisotope high-performance liquid chromatography (RI-HPLC) were omitted. The application of a modified method to Z. platypus exposed to BaP was performed. Results: The results revealed that the amount of RIs used can be reduced roughly 10-fold. Because the analysis time was shortened by 8.5 hours, the sample throughput per hour was increased compared with the previous method. The results of applying modified $^{32}P$-postlabeling assay to Z. platypus, DNA adduct formation in Z. platypus showed dose-dependency with the BaP concentration. Only BPDE-dGMP was detected as a DNA adduct. Conclusion: These results demonstrate that the modified $^{32}P$-postlabeling assay is a suitable method for detecting DNA adduct formation in Z. platypus exposed to waterborne BaP and will be useful in risk assessment of carcinogenic effect in aquatic environment due to BaP.

Survey of the Expression Pattern and Immuno Stimulatory Effect of DNA Vaccine Using β-Galactosidase Reporter System in Olive Flounder (Paralichthys olivaceus)

  • Lee Sang-Jun;Hong Suhee;An Kyong-Jin;Kim Young-Ok
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-75
    • /
    • 2004
  • The CMV promoter driven lacZ reporter gene (pcDNA-lacZ) was constructed and used for DNA immunization study. The expression of the lacZ gene was confirmed in vitro using RTG-2 cell line before using for in vivo study in olive flounder (Paralichthys olivaceus). In the dose response study, the maximum expression of the lacZ gene was found in the group injected with 5 ${\mu} g$ of the plasmid DNA. Kinetic study showed a significantly increased expression of $\beta-galactosidase$ gene at 7 days after injection. Effects of DNA vaccine on specific and nonspecific immune responses such as antibody and NO production were studied and the significant effect was found in olive flounder injected with 10 and 15 ${\mu} g$ DNA (sub optimal dose for lacZ gene expression). Two pro inflammatory cytokine genes, $IL-l\beta$ and $TNF-\alpha$, were also found to be up regulated in the muscle injected with the plasmid, suggesting an induction of local inflammatory response.

Engineering lacZ Reporter Gene into an ephA8 Bacterial Artificial Chromosome Using a Highly Efficient Bacterial Recombination System

  • Kim, Yu-Jin;Song, Eun-Sook;Choi, Soon-Young;Park, Soo-Chul
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.656-661
    • /
    • 2007
  • In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.

Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS (ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별)

  • Hong, Min-Ji;Yang, Dae-Hwa;Jeong, Ok-Cheol;Kim, Yang-Ji;Park, Mi-Young;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Park, Shin-Young;Yang, Paul;Song, Pill-Soon;Ko, Suk-Min;Lee, Hyo-Yeon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysiagrasses are important turf plants used for school playgrounds, parks, golf courses, and sports fields. The two most popular zoysiagrass species are Zoysia japonica and Zoysia sinica. These are widely distributed across different growing zones and are morphologically distinguishable from each other; however, it is phenotypically difficult to differentiate those that grow along the coastal line from those in beach area habitats. A combination of morphological and molecular approaches is desirable to efficiently identify these two plant cultivars. In this study, we used a rapid identification system based on DNA barcoding of the nrDNA-internal transcribed spacer (ITS) regions. The nrDNA-ITS regions of ITS1, 5.8S nrDNA, and ITS2 from Z. japonica, Z. sinica, Agrostis stolonifera, and Poa pratensis were DNA barcoded to classify these grasses according to their molecular identities. The nrDNA-ITS sequences of these species were found at 686 bp, 687 bp, 683 bp, and 681 bp, respectively. The size of ITS1 ranged from 248 to 249 bp, while ITS2 ranged from 270 to 274 bp. The 5.8S coding region ranged from 163 - 164bp. Between Z. japonica and Z. sinica, nineteen (2.8%) nucleotide sites were variable, and the G+C content of the ITS region ranged from 55.4 to 63.3%. Substitutions and insert/deletion (indel) sites in the nrDNA-ITS sequence of Z. japonica and Z. sinica were converted to cleaved amplified polymorphic sequence (CAPS) markers, and applied to the Zoysia grasses sampled to verify the presence of these markers. Among the 62 control and collected grass samples, we classified three groups: 36 Z. japonica, 22 Z. sinica, and 4 Z. japonica/Z. sinica hybrids. Morphological classification revealed only two groups; Z. japonica and Z. sinica. Our results suggest that used of the nrDNA-ITS barcode region and CAPS markers can be used to distinguish between Z. japonica and Z. sinica at the species level.