• Title/Summary/Keyword: Yucca schidigera

Search Result 7, Processing Time 0.017 seconds

Hypocholesterolemic Property of Yucca schidigera and Quillaja saponaria Extracts in Human Body

  • Kim, Sang-Woo;Park, Sang-Kyu;Kang, Sung-Il;Kang, Han-Chul;Oh, Han-Jin;Bae, Chul-Young;Bae, Dong-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1042-1046
    • /
    • 2003
  • This study was undertaken to observe the effects of the blend of partially purified Yucca schidigera and Quillaja saponaria extracts on cholesterol levels in the human's blood and gastrointestinal functions, and to determine if a new cholesterol-lowering drug can be developed by the further purification of the extracts. Ultrafiltration and sequential diafiltration increased the amounts of steroidal saponin in aqueous yucca extract and terpenoid saponin in aqueous qullaja extract from 9.3% and 21.4% to 17.2% and 61.8%, respectively. Taking 0.9 mg of the blend (6:4, v:v) of the resulting filtrates a day for 4 weeks resulted in the decreases in total and LDL cholesterol levels in blood plasma of hyper-cholestrolemic patients with enhancement in gastrointestinal symptoms of patients.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina

  • Ruiz-Romero, Paola;Valdez-Salas, Benjamin;Gonzalez-Mendoza, Daniel;Mendez-Trujillo, Vianey
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV-visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV-visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism ($p{\leq}.05$) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.

Effect of Supplementing Grazing Cattle Calves with Urea-molasses Blocks, with and without Yucca schidigera Extract, on Performance and Carcass Traits

  • Mirza, I.H.;Khan, A.G.;Azim, A.;Mirza, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1300-1306
    • /
    • 2002
  • Fourteen non-descript zebu cattle calves of about 1 year and 6 months age and 111 kg average body weight were used in this experiment. Grazing (5 h daily) animals were supplemented with urea-molasses blocks with and without Yucca, while the control group was without any supplementation i.e. grazing only. The feeding trial continued for a period of 70 days (November to February). At the end of trial three animals per treatment were slaughtered to compare carcass traits. Group no. 1 was fed block with yucca, group no. 2 was fed block without yucca and group no. 3 was on grazing only. Block intake was found to be 724 g/h/d and 1,239 g/h/d for group no. 1 and group no. 2, respectively (p<0.05). Feed efficiency of blocks was found to be 2.71 kg and 4.86 kg for group no. 1 and group no. 2, respectively (p<0.05). Block intake per kg $BW^{0.75}$ was found to be 14.75 and 26.05 gram for group 1 and group 2, respectively (p<0.05). Average daily body weight gain was found to be 267 g/h/d, 255 g/h/d and 169 g/h/d for group 1, 2 and 3, respectively. Carcass traits among the three treatments were found to be statistically similar. Thus urea-molasses blocks supplementation improved body weight gain and addition of yucca in the blocks further improved body weight gain, feed efficiency and economics. Environment (ambient temperature, rainfall, wind and humidity) had no significant effect on three treatments.

Sarsaponin Effects on Ruminal Fermentation and Microbes, Methane Production, Digestibility and Blood Metabolites in Steers

  • Lila, Zeenat Ara;Mohammed, Nazimuddin;Kanda, Shuhei;Kurihara, Mitsunori;Itabashi, Hisao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1746-1751
    • /
    • 2005
  • The objective of this study was to evaluate the effects of sarsaponin on methane production, ruminal fermentation, nutrient digestion and blood metabolites using three Holstein steers in a 3${\times}$3 Latin Square design. The steers were fed Sudangrass hay plus concentrate mixture at a ratio 1.5:1 twice daily, and sarsaponin (0, 0.5 and 1% of DM), which was given at 09:00 and 17:00 h daily by mixing with concentrate. Rumen samples were collected 0, 2, and 5 h after morning dosing. Ruminal pH was numerically decreased and numbers of protozoa were decreased linearly (p<0.01) by treatment. Ruminal ammonia-N was reduced (linear; p<0.05) and total VFA was increased (quadratic; p<0.05) at 2 and 5 h after sarsaponin dosing. The molar proportion of acetate was decreased (quadratic; p<0.05) and propionate was increased (linear; p<0.01) at all sampling times. Blood plasma glucose was increased and urea-N was decreased (linear; p<0.05) at 2 and 5 h after dosing. Methane was decreased by approximately 12.7% (linear; p<0.05). The apparent digestibility of DM and NDF were decreased (quadratic; p<0.05) and that of CP remained unchanged due to the sarsaponin. The numbers of cellulolytic bacteria were decreased (quadratic; p<0.05), while numbers of total viable bacteria remained unchanged due to the sarsaponin. These results show that sarsaponin can partially inhibit rumen methanogenesis in vivo and improve ruminal fermentation, which supports our previous in vitro results.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.