• Title/Summary/Keyword: Yttrium Oxide

Search Result 95, Processing Time 0.021 seconds

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF

Fabrication and characteristics of suspension-plasma-sprayed yttrium oxide coatings (서스펜션 플라즈마 스프레이 코팅법을 이용한 이트리아 코팅막 제조와 특성)

  • Kim, Min Suk;So, Sung Min;Kim, Hyung Soon;Park, Seong Hwan;Ham, Young Jae;Jeon, Min Seok;Kim, Kyoung Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2019
  • The suspension plasma spraying is a modification of conventional plasma spray techniques that has been developed to overcome the challenge of using fine particles in plasma spray processes. In this study, microstructure developments and mechanical property of yttrium oxide (Y2O3) coatings prepared by the suspension plasma spray coating technique have been investigated to determine the effect of processing parameters including plasma gun current and total gas flow. The results showed that a highly dense Y2O3 coating having low porosity of 0.2 vol% without any lamellar structures can be achieved at the optimum condition of gun current 200 A and total gas flow 220 L/min.

Epitaxial growth of yttrium-stabilized HfO$_2$ high-k gate dielectric thin films on Si

  • Dai, J.Y.;Lee, P.F.;Wong, K.H.;Chan, H.L.W.;Choy, C.L.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.63.2-64
    • /
    • 2003
  • Epitaxial yttrium-stabilized HfO$_2$ thin films were deposited on p-type (100) Si substrates by pulsed laser deposition at a relatively lower substrate temperature of 550. Transmission electron microscopy observation revealed a fixed orientation relationship between the epitaxial film and Si; that is, (100)Si.(100)HfO$_2$ and [001]Si/[001]HfO$_2$. The film/Si interface is not atomically flat, suggesting possible interfacial reaction and diffusion, X-ray photoelectron spectrum analysis also revealed the interfacial reaction and diffusion evidenced by Hf silicate and Hf-Si bond formation at the interface. The epitaxial growth of the yttrium stabilized HfO$_2$ thin film on bare Si is via a direct growth mechanism without involoving the reaction between Hf atoms and SiO$_2$ layer. High-frequency capacitance-voltage measurement on an as-grown 40-A yttrium-stabilized HfO$_2$ epitaxial film yielded an dielectric constant of about 14 and equivalent oxide thickness to SiO$_2$ of 12 A. The leakage current density is 7.0${\times}$ 10e-2 A/$\textrm{cm}^2$ at 1V gate bias voltage.

  • PDF

Fabrication and Characterization of ODS 316L Stainless Steels (산화물 분산강화형 316L 스테인리스강의 제조와 특성 연구)

  • Kim, Min-Ho;Ryu, Ho-Jin;Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung;Kwon, Oh-Jong
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.

Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy (Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가)

  • Jeong, Seok-Hoan;Kang, Suk-Hoon;Han, Chang-Hee;Kim, Tae-Kyu;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.

Synthesis of Sinter-active $Y_2O_3$ Powders Using Urea (요소를 이용한 활성 이트리아 분말의 합성)

  • 한주환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1247-1253
    • /
    • 1997
  • Sinter-active yttria powders were prepared by a solution precipitation with using a self-decomposing precipitation agent NH2CONH2(urea). The cold-pressed powders can be sintered to full density and the microstructure of grains less than 200 nm at a temperature as low as 120$0^{\circ}C$. The activity of the yttria powder has been controlled by varying nucleation conditions during precipitation and by minimizing formation of aggregates. The type of precursor is decisive in preparation of a sinter-active oxide powder, and urea is desirable as a precipitation agent for an active yttrium oxide powder.

  • PDF

Effect of Nitrogen, Titanium, and Yttrium Doping on High-K Materials as Charge Storage Layer

  • Cui, Ziyang;Xin, Dongxu;Park, Jinsu;Kim, Jaemin;Agrawal, Khushabu;Cho, Eun-Chel;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.445-449
    • /
    • 2020
  • Non-volatile memory is approaching its fundamental limits with the Si3N4 storage layer, necessitating the use of alternative materials to achieve a higher programming/erasing speed, larger storage window, and better data retention at lower operating voltage. This limitation has restricted the development of the charge-trap memory, but can be addressed by using high-k dielectrics. The paper reviews the doping of nitrogen, titanium, and yttrium on high-k dielectrics as a storage layer by comparing MONOS devices with different storage layers. The results show that nitrogen doping increases the storage window of the Gd2O3 storage layer and improves its charge retention. Titanium doping can increase the charge capture rate of HfO2 storage layer. Yttrium doping increases the storage window of the BaTiO3 storage layer and improves its fatigue characteristics. Parameters such as the dielectric constant, leakage current, and speed of the memory device can be controlled by maintaining a suitable amount of external impurities in the device.