• Title/Summary/Keyword: Young Modulus

Search Result 1,427, Processing Time 0.024 seconds

MECHANICAL PROPERTIES OF QUARTZ FIBER POST (Quartz fiber post의 물리적 특성에 관한 연구)

  • Lee Young-Soo;Kang Ik-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.68-78
    • /
    • 2002
  • The post core system has been used for reconstructon of severely damaged crown by caries or trauma. But problems such as crown exfoliation, post core fracture and root fracture have been reported. Ideal mechanical properies of the post require high fracture strength, high elastic limit and high resistance against fatigue and corrosion Modulus of elasticity of the post should be similar with that of dentine. Low hardness is also required for the convenience of post removal in failure. Furthermore, the post itself must be translucent for the esthetical purpose. Several types of the post have been developed to satisfy the criteria above mentioned. The purpose of this study was to find out the mechanical properties of quartz fiber post by comparing with those of gold post and zirconia post. The results of this study were as follows : 1. Maximal fracture strength and stiffness of quartz fiber post were similar with those of gold post and zirconia post. 2. Young's modulus and hardness of quartz fiber post were lower than those of gold post and zirconia post. Mechanical property of quartz fiber post against post fracture was similar with that of gold post and zirconia post. Mechanical property of quartz fiber post against root fracture was higher than that of gold post and zirconia post. Quartz fiber post could be removed easily due to low hardness.

Determination of the Representative Elementary Volume of Granite by Using Homogenization Theory (균질화법을 이용한 화강암의 대표요소체적 산정에 환한 연구)

  • 서용석;도미란;오대열;홍성완;배규진;김교원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.55-61
    • /
    • 2000
  • For proper sampling of a rock and preparation of specimens, the representative elementary volume (REV) should be determined in rock mechanical test and numerical analysis. Mechanical properties of a rock, in general, would be strongly affected by mineral composition. In this reason REV of Youngju granite is determined by using stereoscopic microscope observation and homogenization numerical analysis. As the area of analysis model exceeds approximately 702 $ extrm{mm}^2$(900 elements), the change of the mineral composition is not observed. The calculated results indicate that Young's modulus is fluctuated with increase of the number of elements in homogenization numerical analysis mesh. However, as the number of elements exceeds 1156 (area of about 900 $ extrm{mm}^2$), Young's modulus does not change apparently.

  • PDF

Determination of the Representative Elementary Volume of Granite by Using Homogenization Theory (균질화법을 이용한 화강암의 대표요소체적 산정에 관한 연구)

  • 서용석;도미란;오대열;홍성완;배규진;김교원
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.309-315
    • /
    • 2000
  • For proper sampling of a rock and preparation of specimens, the representative elementary volume (REV) should be determined in rock mechanical test and numerical analysis. Mechanical properties of a rock, in general, would be strongly affected by mineral composition. In this reason REV of Youngju granite is determined by using stereoscopic microscope observation and homogenization numerical analysis. As the area of analysis model exceeds approximately 702$\textrm{mm}^2$(900 elements), the change of the mineral composition is not observed. The calculated results indicate that Young's modulus is fluctuated with increase of the number of elements in homogenization numerical analysis mesh. However, as the number of elements exceeds 1156 (area of about 900$\textrm{mm}^2$), Young's modulus does not change apparently.

  • PDF

Micro-tensile Test for Micron-sized SCS Thin Film (단결정 실리콘 박막의 미소인장 물성 평가)

  • Lee, Sang-Joo;Han, Seung-Woo;Kim, Jae-Hyun;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • The mechanical behavior of small-sized materials has been investigated for many industrial applications, including MEMS and semiconductors. It is challenging to obtain accurate mechanical properties measurements for thin films due to several technical difficulties, including measurement of strain, specimen alignment, and fabrication. In this work, we used the micro-tensile testing unit with the real-time DIC (Digital Image Correlation) strain measurement system. This system has advantages of real time strain monitoring up to 50 nm resolution during the micro-tensile test, and ability to measure the young's modulus and Poisson's ratio at the same time. The mechanical properties of SCS (Single Crystal Silicon) are measured by uniaxial tension test from freestanding SCS which are $2.5{\mu}m$ thick, $200-500{\mu}m$ wide specimens on the (100) plane. Young's modulus, Poisson's ratio and tensile strength in the <110> direction are measured by micro-tensile testing system.

  • PDF

A Study on Determining Complex Young's Modulus of Acoustic Materials (음향 재질의 복소수 모듈러스 추출에 관한 연구)

  • Kim, In-Su;Lee, Hyo-Keun;Kim, Sung-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 1991
  • Since the Complex Young's Modulus of acoustic materials is a function of frequency under a static load, a cylindrical specimen modelled by rod-like one with losses is used to determine the dynamic characteristics of materials. The specimen is excited into longitudinal vibration at its one end by shaker and at the other end, loaded by a mass corresponding to the desired static load and thus the transfer function of specimen is measured. This transfer function method is analyzed theoretically and experimentally over a frequency range of 50 Hz to 20 KHz. The analysis includes the measurability of the transfer function, the frequency range of the method and lateral motion effect.

  • PDF

Dynamic Mechanical Properties of Bamboos in Korea (한국산(韓國産) 죽재(竹材)의 동력학적(動力學的) 성질(性質))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 1988
  • This study was carried out to investigate the fiber length, fiber width and fiber thickness on the longitudinal direction by the parts of culm and also specific gravity in air dry, dyna.mic mechanical properties and internal frictions by the internode and the node in Phyllostachys bambusoides Phyllostachys nigra var. henonis and Phllostachys edulis which were grown in Korea. The results obtained were as follows; 1. The variations of fiber length and fiber width on the longitudinal direction had a tendency to increase slightly from the butt and then to decrease toward the top. but there was not a definite variation for fiber thickness according to the parts of culm. 2. The specific gravity in air dry of internode was increased from the butt toward the top, but the specific gravity in air dry of node was not correlations with the parts of culm. 3. Dynamic Young's modulus of internode on the longitudinal direction was increased according to the heights of culms within each species, and there were in order of P. edulis P. nigra var. henonis and P. bambusoides. 4. Correation coefficients between the specific gravity and the dynamic Young's modulus were 0.837 in P. bambusoides 0.871 in P. nigra var. henonis and 0.935 in P. edulis and there was also highly significant for dynamic Young's modulus between the specific gravities in air dry. 5. There were not correlations between the internal frictions and the parts of internode.

  • PDF

A Study on the Bimaterial Constant of Two Dissimillar Isotropic Bimaterial Under Static and Dynamic Load (정적 및 동적 하중을 받는 두 상이한 등방성 이종재료의 이종재료상수에 대한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1776-1785
    • /
    • 2004
  • In this research, the relationships between static bimaterial constant and dynamic oscillation index are studied. It was certified that static bimaterial constant has the same form equation as the dynamic oscillation index. Bimaterial constant and oscillation index are increased with the increment of Young's modulus ratio and approached to the some value. Isochromatic fringe patterns are slanted to the left side with increment of bimaterial constants and oscillation index. Though patterns of stress components in above the crack surface are similar to each other, their magnitudes are different a little. In the ahead of crack tip, there are big differences in the isochromatic fringe patterns and their magnitudes. The influence of bimaterial with Young's modulus ratio is bigger in the propagation crack than in the stationary crack.

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure

  • Kojio, Ken;Nozaki, Shuhei;Takahara, Atsushi;Yamasaki, Satoshi
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment contents of 20 and 30 wt% and BD/TMP ratios of 10/0 and 8/2 were chosen. Differential scanning calorimetry and small-angle X-ray scattering measurements revealed that the degree of microphase separation increased with an increase in both hard segment content and BD ratio. The Young's modulus and strain at break of the 1,4-H6XDI-based PUE were 6-20 MPa and 5-15, respectively. Incorporation of 20% TMP as a cross-linking agent into BD increased the melting temperature of the hard segment chains, that is, heat resistance, and decreased the Young's modulus. This could be due to the low density of the physical cross-linking network and the dispersion of hard segment chains in the soft segment matrix in the PUE in the presence of 20% TMP.

Effects of Double Surfaces Finishing on Acoustical Properties of Soundboard for Traditional Musical Instruments (전통악기 음향판의 양면도장이 음향성에 미치는 영향)

  • Jung, Hee-Suk;Yoo, Tae-Kyung;Kwon, Joo-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.26-33
    • /
    • 1998
  • Acoustical properties of chestnut and paulownia woods have been determined in four film thicknesses of oriental lacquering and cashew varnishing on double surfaces of soundboard to elucidate effects of finishing. Accelerometer was attached to the specimen at one third position from one end, and specimen was hit by the impact hammer at one third position from opposite end. Data were processed by vibration analyzer. The ratio of axial-to-transverse sound velocity of untreated specimens of chestnut and paulownia were 3.25 and 5.34, respectively. Natural frequency, specific Young's modulus, acoustical coefficient, sound velocity, damping of sound radiation(DSR) and acoustical converting efficiency(ACE) decreased by oriental lacquering and cashew varnishing for both species. Damping of internal friction of chestnut decreased by oriental lacquering and cashew varnishing, but that of paulownia increased. Natural frequency. specific Young's modulus, acoustical coefficient, sound velocity, and DSR decreased with increased film thickness of both finishing materials. However, damping of internal friction and ACE showed irregular tendency with increased film thickness. Acoustical properties of cashew varnished chestnut specimen were better than those of oriental lacquered specimen. Acoustical properties of oriental lacquered paulownia specimen were better than those of cashew varnished specimen.

  • PDF

Changes of Material Properties of Pre-heated Tuff Specimens (예열처리된 응회암 시험편의 물성 변화)

  • Yoon, Yong-Kyun;Kim, Sa-Hyun
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • Tuff specimens were thermally treated with predetermined temperatures of 200, 400 and $600^{\circ}C$ to construct specimens simulating weathered tuff rocks. Specific gravity, absorption ratio, elastic wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio and slake-durability index were measured for pre-heated specimens. Heating of rock specimens entailed the degradation of material properties except for slake-durability index. It was found that correlations among P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio are high. Regression equations which use the P-wave velocity as an independent variable were presented to evaluate uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio.