• Title/Summary/Keyword: Young's moduli

Search Result 95, Processing Time 0.025 seconds

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Evaluation on Compression Wave Velocities and Moduli of Gyeongju Compacted Bentonite (경주 압축 벤토나이트의 압축파속도와 탄성계수 산정 연구)

  • Balagosa, Jebie;Yoon, Seok;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.41-50
    • /
    • 2019
  • Gyeongju bentonite is a buffer material primarily considered in Korea and it is highly compacted as a part of an engineered barrier system (EBS) of high-level radioactive waste repository. The compacted bentonite undergoes swelling stress by groundwater penetration and thermal stress by decay heat from a canister. Therefore, the mechanical properties of the compacted bentonite buffer material is crucial for the performance assessment of EBS. This paper aims to evaluate deformation properties of Gyeongju compacted bentonite using seismic methods. Two sets of compacted bentonite specimens were prepared having dry densities of $1.59g/cm^3$ and $1.75g/cm^3$ with water contents of 10.6% and 8.7%. Free-free resonant column tests were performed to measure constrained and unconstrained compression wave velocities. With the measured wave velocities, Young's modulus ($E_{max}$) and constrained modulus ($M_{max}$), material damping ratio ($D_{min}$), and Poisson's ratio at small strain were determined. As results, this paper evaluates the deformation properties of Gyeongju compacted bentonite and compares them with the results of previous researches.

Mechanical and Electrical Properties of Heavily Drawn Cu- Nb Nanocomposites with Various Nb contents (Nb함량에 따른 Cu-Nb나노복합재료의 기계적.전기적 특성)

  • Kim, Jong-Min;Jeong, Jin-Hui;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.312-318
    • /
    • 2001
  • The mechanical and electrical properties of Cu-Nb filamentary nanocomposite fabricated by the bundling and drawing process were examined. The strength increased gradually with increasing Nb content while the ductility was insensitive to Nb content. The ratio of yield stresses at 293K and 75K are found to be 치ose to that of Young's moduli in various Cu-Nb nanocomposites, suggesting that athermal obstacles primarily control the strength. The fracture morphologies show ductile fractures irrespective of Nb contents. Secondary cracking along the interfaces between subelemental wires was occasionally observed and the frequency of secondary cracking increased with increasing Nb content. The conductivity and the resistivity ratio decreased with increasing Nb content. The decrease of the conductivity and the resistivity ratio(${\rho}_{293k}$/$\{rho}_{75k}$) can be explained by the increasing contribution of interface scattering.

  • PDF

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.

Dynamic Deformation Characteristics of Fiber Reinforced Soils (섬유혼합토의 동적물성변형특성)

  • Jung, Sung-Yong;Kim, Dae-Il;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.968-976
    • /
    • 2004
  • In the paper, deformation characteristics of fiber-mixed-soils, mixed polypropylene staple fibers of 0.3% fiber content with sands of various gradation, and their effectiveness of reinforcement were evaluated. A series of Resonant Column tests were performed with specimens prepared with varying Uniformity Coefficient and constant Curvature Coefficient. Maximum shear moduli 01 fiber-mixed-soils were increased by up to 30% and modulus reduction was also restrained in nonlinear range. Normalized shear modulus reduction curves of fiber-mixed-soils shift close to the upper limit of Seed curd Idriss's curves and are located within narrower band than those of unmixed soils, which proves the effectiveness on stiffness increment by reinforcing soils with fibers.

  • PDF

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

The Stress Distribution around a Circular Hole Reinforced by a Ring of Different Material in a Plate under Biaxial Loading (이질원환(異質圓環)으로 보강(補强)된 원형(圓形)구멍 주위(周圍)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-67
    • /
    • 1969
  • The effect of a circular hole reinforced by a ring of different material in a plate under biaxial loadings is considered. In this problem, an infinitely large flat is assumed. The reinforcing ring is of uniform rectangular cross-section of same thickness as the plate. The outer boundary of the ring is cemented to the inner boundary of the hole in the plate. The plate is subjected to hydrostatic tension and pure shear loadings. The stress distribution around the hole is obtained by means of the two dimensional theory of elasticity. To conform the validities of above solutions, a series of photo-elastic stress analysis for a composite model was carried out. Fair agreements were observed between two sets of values. The conclusions arrived at are as follows: 1) The theoretical solutions are exact ones for the case of infinitely large flat plate. 2) The solutions can be used for most case of engineering problem if the bonding between the plate and ring is perfect. 3) If the ratio of Young's moduli of the ring and the plate is increased, the stresses in the plate decrease whereas those in the ring increase. 4) The stress concentration near the hole has localized effect. 5) Under hydrostatic tension, maximum principal stress and maximum shear stress increase as the ratio of inner and outer diameters of the ring increases. 6) Under pure shear, the stresses depend upon angular orientations of the points and maximum principal stress and maximum shear stress appear at 45 degree. They increase as the ratio of inner and outer diameters of the ring increases.

  • PDF

Empirical Study for the Effects of Various Filler-Shapes on the Modulus of PP Composites (충전제 함량과 형태에 따른 PP복합체의 모듈러스 변화에 대한 실증적 연구)

  • Kim, Jae-Min;Jeoung, Sun-Kyoung;Shim, Je-Hyeon;Hwang, Hyo-Yeon;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.346-351
    • /
    • 2010
  • The mechanical properties of polypropylene (PP) composites, especially the effects of the filler shapes on the modulus were studied. The experimental results were investigated and compared with the theoretical approaches proposed by Lee and Paul and based on Eshelby's principle, which three dimensional ellipsoids were filled as filler and analyzed in terms of aspect ratio, ${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$. The shapes of fillers were observed by SEM and aspect ratios were statistically calculated. Young's moduli in the longitudinal and transverse directions for barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) had the same values, as predicted values. The modulus in the $x_1$ direction for a glass fibers increased as the filler content increased, while the modulus in the $x_3$ direction was increased relatively small. Furthermore, mica was also used to investigate the effects of the primary and secondary aspect ratios on the mechanical properties.

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.

Experimental and numerical investigation of expanded polystyrene (EPS) geofoam samples under monotonic loading

  • Khalaj, Omid;Siabil, Seyed Mohammad Amin Ghotbi;Azizian, Mehran;Tafreshi, Seyed Naser Moghaddas;Masek, Bohuslav;Kepka, Miloslav;Kavalir, Tomas;Krizek, Michal;Jirkova, Hana
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.475-488
    • /
    • 2020
  • The recent increase in the use of Expanded Polystyrene (EPS) geofoam in construction and geotechnical projects has driven researchers to investigate its behavior, more deeply. In this paper, a series of experimental tests to investigate the stress-strain behavior and the mechanical properties of EPS blocks, under monotonic axial loading are presented. Four different densities of cylindrically shaped EPS with different dimensions are used to investigate the effects of loading rate, height and diameter, as well as the influence of the density of EPS on the stress-strain response. The results show that increasing the height of the EPS samples leads to instability of the sample and consequent lower resistance to the applied pressure. Large EPS samples show higher Young's modulus and compressive resistance due to some boundary effects. An increase in the rate of loading can increase the elastic moduli and compressive resistance of the EPS geofoam samples, which also varies depending on the density of the samples. It was also determined that the elastic modulus of EPS increases with increasing EPS density. By implementing an efficient numerical procedure, the stress-strain response of EPS geofoam samples can be reproduced with great accuracy. The numerical analysis based on the proposed method can used to evaluate the effect of different factors on the behavior of EPS geofoam.