• Title/Summary/Keyword: Young's Modulus Ratio

Search Result 218, Processing Time 0.028 seconds

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

Inelastic general instability of ring-stiffened circular cylinders and cones under uniform external pressure

  • Ross, C.T.F.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.193-207
    • /
    • 1997
  • Experimental tests are described on three ring stiffened machined circular cylinders and three ring stiffened machined circular cones, which were tested to destruction under uniform external pressure. All six vessels failed by inelastic general instability. The experiments showed that the vessels initially deformed plastically at mid-bay in the circumferential direction, and this caused the circumferential tangent modulus to become much less than the elastic Young's modulus, causing the vessels to fail through plastic general instability at pressures much less than that predicted by elastic theory. Based on a thinness ratio, two semi-empirical design charts are provided, which are intended to be used for design purposes in conjunction with the finite element method and a plastic reduction factor.

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.

Precise Property Control in Silicon Nitride Ceramics by $\alpha$/$\beta$ Phase Ratio Control

  • Kawaoka, H.;Kusunose, T.;Choa, Y-H.;Sekino, T.;Niihara, K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.59-64
    • /
    • 2000
  • Silicon nitride ceramics with various α/β phase ratio were fabricated by controlling sintering conditions of PECS process. Mechanical properties varied systematically with α/β ratio. Young's modulus and hardness increased with α-Si₃N₄ volume fraction, and fracture strength and toughness increased with β-Si₃N₄ content.

  • PDF

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Linear Low Density Polyethylene (LLDPE)/Zeolite Microporous Composite Film

  • Jagannath Biswas;Kim, Hyun;Soonja Choe;Patit P. Kundu;Park, Young-Hoon;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.357-367
    • /
    • 2003
  • The linear low density polyethylene (LLDPE)/zeolite composite using novel inorganic filler, zeolite, is prepared by a conventional compounding procedure using a twin-screw extruder. The observed scanning electron microscopic (SEM) morphology shows a good dispersion and adhesion of zeolite in the LLDPE matrix. The mechanical properties in terms of the Young's modulus, the yield stress, the impact strength, and the elongation at break were enhanced with a successive increment of zeolite content up to 40 wt%. The X-ray diffraction measurement is of supportive for the improved mechanical properties and the complex melt viscosity is as well. Upon applying a certain level of strain on the composites, the dewetting, the air hole formation and its growth are characterized. The dewetting originates around the filler particles at low strain and induces elliptical micropores upon further stretching. The microporosity such as the aspect ratio, the number and the total area of the air holes is also characterized. Thus, the composites loaded 40 % zeolite and 300 % elongation may be applicable for breathable microporous films with improved modulus, impact and yield stress, elongation at break, microporosity and air hole properties.

Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair (폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질)

  • Young-Kug Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.97-104
    • /
    • 2023
  • The aim of this study was to produce polymer cement composites (PCCs) composed of polymer dispersion and cement as crack repair materials for RC structures, and to investigate their fundamental properties. The test mixtures for the study were based on EVA and SAE polymer dispersions, and the water-cement ratio was determined while varying the polymer-cement ratio(P/C) in four different levels (20%, 60%, 80%, and 100%) to achieve the desired viscosity of PCCs considering their fillability as crack repair materials. Additionally, silica fume was incorporated into P/C 80% and 100% specimens to enhance their stiffness. The basic properties of PCCs as crack repair materials, such as viscosity, flowability, fillability, tensile strength, elongation, and modulus of elasticity, were examined. The results showed that P/C depending on the type of polymer significantly affected the viscosity and flowability, and appropriate w/c ratios were needed to achieve the desired viscosity for the mixture design with consideration of fillability as crack repair materials for RC structures. All designed mixtures in this study exhibited excellent fillability. The tensile strength and elongation of PCCs satisfied the KS regulation for cement- polymer modified waterproofing coatings. The incorporation of silica fume improved the tensile strength and modulus of elasticity of PCCs. Depending on the type of polymer, mixtures using SAE showed better fundamental properties as crack repair materials for RC structures compared to those using EVA. In conclusion, SAE-based P/C 80% or 100% with the addition of up to 30% silica fume can be recommended as suitable mixtures for crack repair of RC structures.

Strength characteristics of cemented sand of Nak-dong river (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Young-Su;Jeong, Woo-Seob;Kim, Ki-Young;Lee, Sang-Woong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.808-817
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know the special quality of strength of the cemented sand that is mixed with cement and poor-graded sand which is the materials of riverbed in the basin of the Nak-Dong river as levee's material. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement ratio, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test, triaxial compression test as changing ratio of sand and cement from 2% to 8% at two points in the basin of the Nak-Dong river.

  • PDF

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials (경사기능재료를 사용한 회전하는 외팔보의 진동해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.