• Title/Summary/Keyword: Yolk granule

Search Result 22, Processing Time 0.029 seconds

Structure of Egg Envelope and Oogenesis of the Korean Endangered Fish Gobiobotia brevibarba (Pisces: Cyprinidae) (멸종위기 어류 돌상어 Gobiobotia brevibarba의 난자형성과정과 난막의 형태)

  • Choi, Wung Sun;Kim, Jae Goo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • A histological study on the egg envelope and oogenesis of Gobiobotia brevibarba (Pisces, Cyprinidae) was carried out by a light microscope and a scanning electron microscope. Various developmental cells appeared in the ovary caught during May 2014, spawning season. For the relative area of oocyte, the ovary consisted of mature stage (74.5%), a vitellogenic stage (yolk granule stage, 16.6% and yolk vesicle stage, 6.6%) and previtellogenic stage (perinucleolus stage 2.2%), which means its spawning season. The cytoplasm of the perinucleolus oocyte is acidic and many nucleoli are located at the inner side of the nuclear membrane. The yolk vesicles, an early vitellogenic stage, has a follicular layer and a zona radiata clearly. Numerous villi, called an egg envelope, begin to form on the zona radiata. The yolk granules, an another vitellogenic stage, proceeds and they show a strong eosinophilic nature. Such yolk granules appeared between the yolk vesicles occupying most cytoplasm, and as the stage proceeds, there are some yolk masses fused with each other. Egg envelope is covered with plenty of villi ($2{\sim}3{\mu}m$ in the length) over the entire egg surface.

Developmental Changes of the Oocyte and Its Enveloping Layers, in Micropercops swinhonis (Pisces: Perciformes)

  • Park, Jong-Young;Richardson, Ken-C.Richardson;Kim, Ik-Soo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1998
  • In the goby Micropercops swinhonis, the development of its egg's enveloping layers could be divided into 4 stages. In the earliest developmental period, stage I, there is a simple oocyte surrounded by a layer of squamous follicular cells. Stage II corresponds to the yolk vesicle stage of vitellogenesis. Here the initial follicular layer has become bilaminar with the retention of its outer squamous cell layer and the acquisition of an inner cuboidal cell layer just over the zona radiata. The number and size of the cuboidal cells increases throughout this stage. Stage III corresponds to the yolk granule stage of true vitellogenesis. Here the cuboidal cells begin to be replaced by columnar cells. As the oocyte grows, the columnar cells increase in size. The columnar cells produce cytoplasmic neutral mucins and by the end of this stage their cytoplasm has been filled with this mucin. In stage IV a single layer of squamous cells still remained as the outer follicular layer of the oocyte. The secretory activity of the inner follicular layers' columnar cells has ceased and they had lost their cell wall integrity and ended as a series of bullet-shaped, neutral mucin deposits.

  • PDF

Structure of the Ovary and Ultrastructural Study of Vitellogenesis in the Oocytes in Female Gomphina veneriformis (Bivalvia: Veneridae) in Eastern Korea

  • Choi, Ki-Ho;Chung, Chang-Ho;Lee, Sa-Heung;Park, Gab-Man;Choi, Moon-Sul;Lee, Ki-Young
    • The Korean Journal of Malacology
    • /
    • v.26 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • The structure of the ovary, ultrastructure of oocytes and morphological characteristics of vitellogenesis during oogenesis in female Gomphina veneriformis were investigated in clams collected from coastal waters of Samchok, Gangwon-do, Kore. In the previtellogenic oocytes, the Golgi complex was involved in the formation of a number of vacuoles. In the early vitellogenic oocytes, lipid droplets appeared among the Golgi complex, endoplasmic reticulum, and mitochondria in the cytoplasm of the oocyte were involved in the formation of lipid droplets. Coated vesicles, resulting from endocytosis appeared at the basal region of the early vitellogenic oocyte. The uptake of nutritive materials in the coated vesicles formed by receptor-mediated endocytosis appeared through the formation of coated endocytotic pits on the oolemma. In the late vitellogenic oocytes, large yolk granules were formed by a combination of small yolk granules. In the mature oocyte, a mature yolk granule in composed of three components: crystaline core, electron lucent cortex, and a limiting membrane. According to cytological and histological observations, vitellogenesis occurred by way of endogenous autosynthesis and exogenous heterosynthesis. Autosynthesis involved the conbined activities of the Golgi complex, mitochondria, rough endoplasmic reticulum, whereas heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the early vitellogenic oocyte. The follicle cells which was attached to oocytes, were involved in the development of the previtellogenic and early vitellogenic oocytes as a kind of nutritive cells containing a number of glycogen particles and lipid droplets in the cytoplasm.

Follicular Layer of Oocytes of Micropercops swinhonis (Pisces: Perciformes) (좀구굴치 Micropercops swinhonis의 난여포층)

  • Park, Jong-Young;Kim, Ik-Soo;Lee, Yong-Joo
    • Korean Journal of Ichthyology
    • /
    • v.13 no.4
    • /
    • pp.254-260
    • /
    • 2001
  • In the goby Micropercops swinhonis, the follicular layer of full-grown oocytes consists of an outer layer (theca cell) and an inner layer (granulosa cell). As the oocyte grows, columnar cells of inner granulosa layer secrete mucin to their cytoplasm and then surround the oocyte. Such granulosa cells appear to be cuboidal cells in the early vitellogenesis, yolk vesicle stage, to be replaced by columnar cell secreting mucins (adhesive materials) in the middle vitellogenesis, yolk granule stage. The enveloping layer of the oocyte has a muco- follicle layer filled with mucins. The mucins are an amorphous and electron-dense substance. Interestingly, the oocyte enveloping layer becomes thickened towards the animal pole as vitelogenesis proceeds. A zona radiata of about $7.8{\sim}11.5\;{\mu}m$ thick is present below the muco-follicle layer. The zona radiata is composed of an one-layered electron-dense externa and a three to five-layered electron-less interna.

  • PDF

Histological Study on the Ovarioles of Diplonichus esakii Miyamoto et Lee (Heteroptera) (각시물자라(Diplonichus esakii)의 卵巢小管에 對한 組織學的 硏究)

  • Park, Won-Chul;Lee, Chang-Eon
    • The Korean Journal of Zoology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 1971
  • In Diplonichus esakii each ovary comprises five telotrophic ovarioles. In the fourth instar, the anterior part of the germarium consists of undifferentiated cells. The middle part contains a spherical trophic and the posterior part comprises young oocytes, followed by the upside downbell shape prefollicular tissue. The bell form is the standard characteristic in this instar larva, and the nutritive cord is found although somewhat indistinctly. In the fifth instar larva, the trophic core is elliptical form, and the oocyte is found at the base of the core. The oocytes are connected with the ocre by the nutritive cord. In the prefollicular tissue are also found some oocytes. In the adult, the vitellarium is filled by the developmental oocytes. The yolk granules inside each oocyte migrate from the base of the follicular epithelial cells to the center of the oocyte. Finally, the ooplasm of the oocyte becomes completely homogeneous. Therefore, according to the advancing of instars the nutritive cord developes completely before the oocyte has chorion and the follicular epithelial cell binucleates. The upper part of the ovariole consists of unchorionated oocytes, and the proximal part comprises chorionated oocytes in the adult.

  • PDF

Ultrastructural Study of Oogenesis and Reproductive Cycle of the Female Manila Clam, Ruditapes philippinarum in Komso Bay, Korea

  • Chung, Ee-Yung;Lee, C-Hang-Hoon;Park, Ki-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.02a
    • /
    • pp.46-49
    • /
    • 2001
  • R. Philippinarum is dioecious and oviparous. In the early vitellogenic oocyte, the Golgi apparatus and mitochondria present in the perinuclear region are involved in the formation of lipid droplets and in lipid granule formation. In the late vitellogenic oocyte, the endoplasmic reticulum, mitochondria in the cytoplasm are involved in the formation of proteid yolk granules. At this time, exogenous lipid granular substance and glycogen particles in the germinal epithelium are passed into the ooplasm of oocyte through the microvilli of the vitelline envelope. Ripe oocytes are about 55-60 $\mu$ m in diameter. The spawning period was once a year between early June and early October, and the main spawning occurred between July and August when seawater temperature was approximately 20 C. The reproductive cycle of this species can be categorized into five successive stages: early active stage (February to March), late active stage (April to May), ripe stage (April to August), partially spawned stage (June to October), and spent/inactive stage (August to March). Gonad developmental phases by histological qualitative analysis showed similar results with those of quantitative image analysis.

  • PDF

Ultrastructural Study of Vitellogenesis during Oogenesis and Sexual Maturation of the Female Neptunea (Barbitonia) arthritica cumingii on the West Coast of Korea (한국 서해산 암컷 갈색띠매물고둥, Neptunea (Barbitonia) arthritica cumingii의 난자형성과정 중 난황 형성의 미세구조적 연구 및 성 성숙)

  • Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Vitellogenesis during oogenesis, reproductive cycle and first sexual maturity of the female Neptunea (Barbitonia) arthritica cumingii was investigated by light and electron microscope observations. In the early vitellogenic oocyte, the Golgi complex and mitochondria were involved in the formation of lipid droplets and yolk granules. In late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of proteid yolk granules in the cytoplasm. A mature yolk granule was composed of three components: main body(central core), superficial layer, and the limiting membrane. The spawning season was between May and August and the main spawning occurred between June and July when the seawater temperature rose to approximately $18{\sim}23^{\circ}C$. The female reproductive cycle can be classified into five successive stages: early active stage(September to October), late active stage(November to February), ripe stage(February to June), partially spawned stage(May to August), and recovery stage(June to August). The rate of individuals reaching the first sexual maturity was 53.1% in females of 51.0 to 60.9mm in shell height, and 100% in those over 61.0mm.

  • PDF

Ultrastructural Studies of Vitellogenesis According to Germ Cell Development, and Mating Period and Spawning Activity in Female Rapa Whelk, Rapana venosa (Gastropoda: Muricidae) in the Brackish Water Area of Seomjin River, Korea (한국 섬진강 기수역 암컷 피뿔고둥 Rapana venosa (복족류 : 뿔소라과)의 생식세포 발달에 따른 난황형성과정의 미세구조적 연구 및 교미 시기와 산란 활성)

  • SON, Pal-Won;LEE, Il-Ho;KIM, Sung-Han
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1031-1040
    • /
    • 2015
  • Ultrstructural studies of germ cell differentiation and vitellogenesis in the oocytes of the female Rapana venosa in the brackish water area of Seomjin River were investigated by transmission electron microscope observations. In the early vitellogenic oocytes, the Golgi complex and mitochondria were involved in the formation of glycogen particle, lipid droplets, and yolk granules. In the late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of proteid yolk granules in the cytoplasm. However, heterosynthetic vitellogenesis in this species were not observed in vitellogenic oocytes during oogenesis. A mature yolk granule was composed of three components: crystalline core, electron lucent cortex and the limiting membrane. As shown in some large gastropods, vitellogenesis in R. venosa occurred by way of endogenous autosynthesis without heterosythetic vitellogenesis (exogeneous endocytosis), which are found in the oocytes in bivalves. The mating period and spawning activity were related with the increases of seawater temperatures and salinities.

Oogenesis and Reproductive Cycle of Glossaulax didyma on the West Coast of Korea (한국 서해산 큰구슬우렁이, Glossaulax didyma의 난자형성과정 및 생식주기)

  • Kim, Dae-Gi;Chung, Ee-Young;Kim, Eun-Jong
    • The Korean Journal of Malacology
    • /
    • v.22 no.1 s.35
    • /
    • pp.13-22
    • /
    • 2006
  • Gonadosomatic index (GSI), oogenesis and reproductive cycle of Glossaulax didyma were investigated by the cytological histological obserbations and morphometric data. Samples were collected monthly from the intertidal zone of Biin Bay, Seocheon, Korea, for one year. Monthly variations in the GSI showed similar patterns with gonadal development. In the early vitellogenic oocyte, the Golgi complex and mitochondria were invovled in the formation of lipid droplet and yolk precursor. In the late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of profeid yolk granules in the cytoplasm. A mature yolk granule was composed of three components: main body (central core), superficial layer, and the limiting membrane. The spawning season was from early June to late August, and the main spawning occurred between July and August when the seawater temperature was above $19^{\circ}C$. The female reproductive cycle can be classified into five successive stages: early active stage (December to February), late active stage (February to March), ripe stage (April to July), spawning stage (June to August), recovery stage (August to November). Fully mature oocytes were approximately $250-270{\mu}m$ in diameter.

  • PDF

Cell Biological Study on Factors Affecting Brain Formation at Early Chick Embryo (1) The Effect of Serotonin (초기 계배의 뇌형성에 미치는 몇가지 요인에 관한 세포 생물학적 연구 (1) Serotonin의 영향)

  • 최임순;주상옥;주충노;오억수;신길상
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.55-73
    • /
    • 1989
  • The effect of tryptophan or serotonin on the early stage of chick brain development has been morphologically investigated using an electron microscope. The electron micrographs of neural plate cells of 1-day chick embryo treated with tryptophan or serotonin showed irregularity, evagination and disruption of nuclear membrane and nuclear chromatin condenstation, nucleolar margination and segregation. Hypertrophy of stalks, vesicles and vaculoes were seen and dilated and disrupted rough endoplasmic reticulum and underdeveloped neurotubules were also observed. In mesenchyme cells of tryptophan or serotonin administered 18 hr embryo, irregular nuclear membrane, swollen mitochondria, dilated rough endoplasmic reticulum and very large yolk granules were observed. Furthermore, DNA, RNA and protein contents of the embryos treated with typtophan or serotonin were considerably lower than those of control group. The amount of tubulin of the experimental groups was also greatly lower than that of control, suggesting that the impairment of microtubule formation occurred. Tryptophan or serotonin administration might depress the biosynthesis, of nucleic acid and protein including some enzymes tested. It seems that the serotonin formed from exogeneous tryptophan might inhibit the degradation of yolk granule by feedback regulation mechanism so as to impair microtububle and microvilli formation followed by a malformation of chick embryos.

  • PDF