• Title/Summary/Keyword: Yld2000-2d

Search Result 12, Processing Time 0.017 seconds

Time-Dependent Spring-back Prediction of Aluminum Alloy 6022-T4 Sheets Using Time-Dependent Constitutive law (시간 의존성 구성방정식을 이용한 AA6022-T4 판재의 탄성 복원 예측)

  • Park, T.;Ryou, R.;Lee, M.G.;Chung, K.H.;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • The time-dependent constitutive law was developed based on viscoelastic-plasticity to describe the time-dependent spring-back behavior of aluminum alloy 6022-T4 sheets. Besides nonlinear viscoelasticity, non-quadratic anisotropic yield function, Yld2000-2d, was used to account for the anisotropic yield behavior, while the combined isotropic-kinematic hardening law was used to represent the Bauschinger effect and transient hardening. For verification purposes, finite element simulations were performed for the draw-bending and the results were compared with experimental results.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect - II (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측 - II)

  • Choi, S.C.;Kim, H.Y.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.285-288
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. Tensile tests and R-value tests were carried out at several levels of temperature and strain-rate from $25^{\circ}C$ to $300^{\circ}C$ and 0.16 to 0.00016/s, respectively to obtain the mechanical properties of AZ31B magnesium alloy sheet. The FLD of this material was experimentally obtained by limit dome height tests with the punch velocity of 0.1 and 1.0 mm/s at $250^{\circ}C$. The M-K theory-based FLD predicted using Yld2000-2d yield criterion was compared with the experimental results.

  • PDF