• Title/Summary/Keyword: Yield Ability

Search Result 633, Processing Time 0.028 seconds

Trends in Heritability of Daily Milk Yield by Periods in Korean Cattle

  • Choi, J.G.;Jeon, K.J.;Na, K.J.;Lee, C.W.;Kim, J.B.;Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1239-1241
    • /
    • 2003
  • Korean cattle breeders have shown interest in genetic improvement of milking ability because poor milking ability and short suckling period of Korean cattle is a hindrance to growth of calves. In this study, daily milk yields by period in Korean cattle were analyzed with an animal model. The milk yields were actually measured at sequential intervals from 1 to 4 months after calving: daily milk yields from delivery to 1 month (DMY1), from 1 to 2 months (DMY2), from 2 to 3 months (DMY3), and from 3 to 4 months (DMY4). Genetic variance estimates gradually increased by the periods while environmental variance estimates gradually decreased. This resulted in a dramatic increase in the heritability by periods: 0.02 for DMY1, 0.11 for DMY2, 0.16 for DMY3, and 0.42 for DMY4. In multi-trait analyses with daily milk yield and body weight of calf, genetic correlation estimates between milk yield and body weight were quite small (-0.08 to 0.02 for birth weight and -0.10 to 0.00 for weaning weight). The trends of the heritability estimated in this study showed that the genetic effects were more influential when the milking period was longer, suggesting genetic evaluations with daily milk yield collected at a longer period.

Variation in seedling growth inhibition due to Maleic Hydrazide treatment of rice(Oryza sativa) and ragi(Eleusine coracana) genotypes and its relationship with yield and adaptability

  • Das, Swarnalata;Sinha, Susil Kumar;Misra, Rama Chandra
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.215-222
    • /
    • 2008
  • Multilocation trials on 36 rice(Oryza sativa) genotypes of 3 different maturity groups were conducted at four different locations of Orissa for 3 years and 30 ragi(Eleusine coracana) genotypes of 2 different maturity groups were evaluated in three environmental conditions for 3 years. Grain yield data were subjected to stability analysis following linear regression model to estimate adaptability and stability parameters, i.e. b, and $S^2d$ Stability of performance of genotypes was also estimated by two other stability parameters viz., ecovalence W and AMMI stability value ASV. The rice and ragi genotypes of different duration groups showed wide variation in their mean yield, b, $S^2d$, W and ASV parameters. Seeds of the 36 rice and 30 ragi genotypes were treated with 500 and 100 ppm aqueous solution of maleic hydrazide(MH) for 24 hours, respectively to study MH-sensitivity. Sensitivity of genotypes to MH treatment was estimated in terms of seedling growth inhibition index(SGI). The rice and ragi genotypes showed wide differences in their MH-sensitivity in terms of SGI. Relationship of MH-sensitivity of genotypes with their yielding ability, adaptability and stability of performance was tested by contingency $x^2$ test. Low sensitivity of rice and ragi genotypes to MH in terms of SGI appeared to be good indicators of high yielding ability of genotypes. Also, low and high MH-sensitivity of genotypes would be a good indicator of better adaptability to rich and poor environments, respectively, in ragi but not in rice. Low MH-sensitivity of genotypes could be the good indicator of stability of yield performance in rice but not in ragi.

  • PDF

Studies on Analysis of Growth Characteristics, Ability of Dry Matter Production, and Yield of Panax ginseng C. A. Meyer at Different Growth Stages with Different Cultivars and Shading Nets in Paddy Field (논토양에서 해가림 유형 및 품종별 인삼의 생육시기에 따른 생육특성, 건물생산 능력 및 수량성 비교)

  • Song, Beom-Heon;Chang, Yoon-Gi;Lee, Kyung-A;Lee, Sung-Woo;Kang, Seung-Won;Cha, Sun-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • This study was conducted to examine major growth responses, the production and partitioning of dry matter on different growth stages, and yields and to select the optimal shading material in both quality and productivity of ginseng. Two cultivars of ginseng, Cheonpoong and Geumpoong, were cultivated in the paddy soil with three different shading materials; three-layered blue and one-layered black polyethylene (TBP), blue polyethylene sheet (BPS), and aluminium-coated polyethylene sheet (APS). Plant heights were linearly increased until June 24 and then maintained with showing higher height in Cheonpoong than that in Geumpoong cultivar. Root lengths were gradually increased until October 16. They were longer in Cheonpoong than that in Geumpoong cultivar, showing slightly longer with APS compared to TBP and BPS. The ability of producing dry matter of leaves was much higher from April to June compared to those of other growth periods, whereas its ability of root was concentrated from the end of June to the end of August. Among the shading materials, the ability of producing dry matter of shoot was higher with TBP than those with BPS and APS, while its ability of root was not appeared certain tendency unlike the shoot. The yield of ginseng roots was the highest with TBP among three shading materials and it was higher in Cheonpoong than that of Geumpoong cultivar. The shading materials which affect the light intensity and the temperature would be considered as an important factor to get better quality and productivity of Korean ginseng.

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조요 내화강의 열화특성에 관한 연구)

  • 김현수;남기우;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.51-56
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in tensile test of high strength fire resistance steel for frame structure with time frequency analysis methods. The results obtained are summaries as follows ; In the T and TN specimen consisting of ferrite and pearlite grains, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$ - 10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point the second is after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min specimens, many signals were observed from area before yield point and counts were decreased after yield point.

  • PDF

A Growth and Yield Model for Predicting Both Forest Stumpage and Mill Side Manufactured Product Yields and Economics

  • Schultz Emily B.;Matney Thomas G.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.305-309
    • /
    • 2006
  • This paper presents and illustrates the application of a growth and yield model that supports both forest and mill side volume and value estimates. Traditional forest stand growth and yield models represent the forest landowner view of yield and economics. Predicted yields are estimates of what one would expect from a procurement cruise, and current stumpage prices are applied to investigate optimum management strategies. Optimum management regimes and rotation ages obtained from the forest side view are unlikely to be economically optimal when viewed from the mill side. The actual distribution of recoverable manufactured product and its value are highly dependent on mill technologies and configurations. Overcoming this limitation of growth and yield computer models necessitates the ability to predict and price the expected manufactured distribution of lumber, lineal meters of veneer, and tonnes of air dried pulp fiber yield. With these embedded models, users of the yield simulator can evaluate the economics of possible/feasible management regimes from both the forest and mill business sides. The simulator is a forest side model that has been modified to produce estimates of manufactured product yields by embedding models for 1) pulpwood chip size class distribution and pulp yield for any kappa number (Schultz and Matney, 2002), 2) a lumber yield and pricing model based on the Best Opening Face model developed by the USDA Forest Service Forest Products Laboratory (Lewis, 1985a and Lewis, 1985b), and 3) a lineal meter veneer model derived from peeler block tests. While the model is strictly applicable to planted loblolly pine (Pinus taeda L.) on cutover site-prepared land in the United States (US) Gulf South, the model and computer program are adaptable to any region and forest type.

  • PDF

A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods (보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구)

  • 한만엽;백승덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

Varietal Difference of Dry Matter Production and Photosynthetic of Middle and Lower Leaves in Soybean

  • Cho, Jin-Woong;Kim, Choong-Soo;So, Jung D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • This research was conducted to compare the dry matter production and the yield productivity among nine soybean cultivars by measuring the photosynthetic ability of the middle and lower leaves at the flowering and the seed development stages. The leaf greenness(SPAD value) were ranged as 32-42 at the flowering stage. Also, They were ranged as 25-40 and 38-51 at the fifth leaf and the seventh leaf, respectively. The photosynthetic ability at the flowering and the seed development stage showed significant differences among soybean cultivars, and the photosynthetic ability at the seed development stage showed higher difference among cultivars than the flowering stage. The variation of the photosynthetic ability at the flowering and the seed development stage also was significant among cultivars. The light saturation point at the flowering stage was about 1500 $\mu$mol $m^{-2}$ $s^{-1}$ PAR, and the seed development stage was about 1000 $\mu$mol $m^{-2}$ $s^{-1}$ PAR. The photosynthesis showed the high negative correlation with the leaf area and the positive correlation with the leaf area ratio. Also, photosynthesis at seed development stage showed positive correlation with grain yields but there was not significant between photosynthesis and yields at flowering stage..

Effect of Planting Density and Nitrogen Level on Growth and Yield in Heavy Panicle Weight Type of Japonica Rice

  • Kim, Bo-Kyeong;Kim, Hyun-Ho;Ko, Jae-Kwon;Shin, Hyun-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • To investigate the effects of planting density and nitrogen level on growth and yield potential of newly bred heavy panicle japonica rice with large grain (Iksan 435 and Iksan 438) or many spikelets per panicle(HR14022-21-8-4 and HR14022-21-8-6), four heavy panicle type rices and two many panicle type rices(Dongjinbyeo and Donganbyeo) as the checks were planted under standard planting density (30$\times$15 cm) and dense planting density (15$\times$15 cm) with two nitrogen levels of standard nitrogen level(110 kg h $a^{-1}$) and heavy nitrogen level(165 kg h $a^{-1}$). Effective tiller rate decreased in dense planting or heavy nitrogen, when compared to standard nitrogen and planting, while leaf area index and to dry weight increased in dense planting or heavy nitrogen. Tiller numbers and panicle numbers were more increased by dense planting than heavy nitrogen, whereas spikelet numbers were more increased by heavy nitrogen than dense planting. Ripened grain ratio was slightly lower only in dense planting. 1,000 grain weight in brown rice was not significantly different in dense planting or heavy nitrogen. Milled rice yield was highest in heavy nitrogen with standard planting for heavy panicle type rice, while yield for many panicle type rice was highest in heavy nitrogen with dense planting, suggesting that many panicle type rice possesses higher adapt-ability for dense planting than heavy panicle type rice. Path coefficient analysis revealed that top dry weight, spikelet number and grain weight were the greatest positive contributors to yield, whereas tiller number was negative to yield.d.

  • PDF

Effect of NaCl, Gum Arabic and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar Proteins

  • Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.808-814
    • /
    • 2014
  • This study investigated the effect of gum arabic (GA) combined with microbial transglutaminase (TG) on the functional properties of porcine myofibrillar protein (MP). As an indicator of functional property, heat-set gel and emulsion characteristics of MP treated with GA and/or TG were explored under varying NaCl concentrations (0.1-0.6 M). The GA improved thermal gelling ability of MP during thermal processing and after cooling, and concomitantly added TG assisted the formation of viscoelastic MP gel formation. Meanwhile, the addition of GA decreased cooking yield of MP gel at 0.6 M NaCl concentration, and the yield was further decreased by TG addition, mainly attributed by enhancement of protein-protein interactions. Emulsion characteristics indicated that GA had emulsifying ability and the addition of GA increased the emulsification activity index (EAI) of MP-stabilized emulsion. However, GA showed a negative effect on emulsion stability, particularly great drop in the emulsion stability index (ESI) was found in GA treatment at 0.6 M NaCl. Consequently, the results indicated that GA had a potential advantage to form a viscoelastic MP gel. For the practical aspect, the application of GA in meat processing had to be limited to the purposes of texture enhancer such as restructured products, but not low-salt products and emulsion-type meat products.