• Title/Summary/Keyword: Yeongsan

Search Result 422, Processing Time 0.026 seconds

Extract from Eucheuma cottonii Induces Apoptotic Cell Death on Human Osteosarcoma Saos-2 Cells via Caspase Cascade Apoptosis Pathway (Eucheuma cottonii 추출물에 의한 인체 골육종암 Saos-2 세포의 자가사멸 유도)

  • Kang, Chang-Won;Kang, Min-Jae;Kim, Kyong Rok;Kim, Nan-Hee;Seo, Yong Bae;Kang, Keon-Hee;Kim, Sang-Ho;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Osteosarcoma (OS) is the most common and malignant bone tumors. Although many types of resection surgery and experimental agents were developed, median survival and clinical prognosis are poorly investigated. Recently, several researches have reported that Eucheuma cottonii has potent as protective effects of coal dust-induced lung damage via inhibition of malondialdehyde (MDA) and oxidative stress in bronchoalveolar lavage fluids (BALF). However, anti-cancer effects and specific molecular mechanism of extract from Eucheuma cottonii (EE) has not been clearly studied yet. This study evaluated that anti-cancer potential of EE in human osteosarcoma Saos-2 cells. EE indicated cytotoxicity on Saos-2 cells in a dose-dependent manner. Morphological degradation and nucleic condensation were also observed under the EE treatment. However, it did not significantly affect on non-cancerous kidney HEK-293 cells under the same concentration which is shown cytotoxicity on Saos-2 cells. The phosphorylation of Fas-Associated Death Domain (FADD) and expression of cleaved caspase-8, -7 and -3 were upregulated in a dose-dependent manner. In immunofluorescence staining, expression level of Fas and cleaved PARP were upregulated by EE treatment. Furthermore, treatment of EE induces upregulation of sub G1 phase by flow cytometry analysis. The results demonstrated that EE has a therapeutic potential against osteosarcoma via FADD mediated caspase cascade apoptosis signal pathway.

Reassessment on the Four Major Rivers Restoration Project and the Weirs Management (4대강 살리기사업의 재평가와 보의 운용방안)

  • Lee, Jong Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.225-236
    • /
    • 2021
  • The master plan for the Four Rivers Restoration Project (June 2009) was devised, the procedure of pre-environmental review (June 2009) and environmental impact assessment (Nov. 2009), and post-environmental impact survey were implemented, and 4 times audits also inspected. and finally the Ministry of Environment's Four Rivers Investigation and Evaluation Planning Committee proposed the dismantling or partial dismantling of the five weirs of the Geum River and Yeongsan River. But controversies and conflicts are still ongoing. Therefore, this study intend to reestablish the management plan for the four major rivers by reviewing and analyzing the process so far. The results are as follows. First, a cost-benefit analysis should be performed by comparing the water quality impact of weir operation and weir opening. Therefore, it is inevitably difficult to conduct cost-benefit analysis. Second, according to the results of cost-benefit analysis on the dismantling of the Geum River and the Yeongsan River, the dismantling of the weir and the regular sluice gate opening was decided. However, there is a problem in the validity of the decision to dismantle the weir because the cost-benefit analysis for maintaining the weir is not carried out. Third, looking at the change in water quality of 16 weirs before and after the Four Major Rivers Restoration Project, COD and Chl-a were generally deteriorated, and BOD, SS, T-N, and T-P improved. However, in the cost-benefit analysis related to water quality at the time of weir dismantling, only COD items were targeted. Therefore, the cost of BOD, SS, T-N, and T-P items improved after the project were not reflected in the cost-benefit analysis of dismantling weirs, so the water quality benefits were exaggerated. Fourth, in the case of Gongju weir and Juksan weir, most of them are movable weirs, so opening the weir alone can have the same effect as dismantling when the water quality deteriorates. Since the same effect can be expected, there is little need to dismantle the weirs. Fifth, in order to respond to frequent droughts and floods, it is desirable to secure the agricultural water supply capacity to the drought areas upstream of the four majorrivers by constructing a waterway connected to the weir. At present it is necessary to keep weirs rather than dismantling them.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI) (표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가)

  • Kim, Byung-Sik;Sung, Jang-Hyun;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.887-900
    • /
    • 2012
  • Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.

A Study on Hydrologic Clustering for Standard Watersheds of Korea Water Resources Unit Map Using Multivariate Statistical Analysis (다변량 통계분석기법을 이용한 전국 표준유역 대상 수문학적 군집화 연구)

  • Ahn, So-Ra;Kim, Sang-Ho;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.91-106
    • /
    • 2014
  • This study tries to cluster the 795 standard watersheds of Korea Water Resources Unit Map using multivariate statistical analysis technique. The 30 factors of watershed characteristics related to topography, stream, meteorology, soil, land cover and hydrology were selected for comprehensive analysis. From the factor analysis, 16 representative factors were selected. The significant factors in order were the pedological feature, scale and geological location and meteorological and hydrological features of the watershed. As a next step, the 73 gauged watersheds were selected for cluster analysis. They are scattered properly to the whole country and the discharge data were within a confidential level. Based on the 73 watersheds, the other ungaged watersheds were clustered by applying the 16 factors and calculating Euclidian distances. The clustering results showed that the similarity between standard watersheds within the same river basin were 87%, 69%, 41%, 52%, and 27% for Han, Nakdong, Geum, Seomjin, and Yeongsan river basins respectively.

The Effect of the Chemical Lateral Boundary Conditions on CMAQ Simulations of Tropospheric Ozone for East Asia (동아시아지역의 CMAQ 대류권 오존 모의에 화학적 측면 경계조건이 미치는 효과)

  • Hong, Sung-Chul;Lee, Jae-Bum;Choi, Jin-Young;Moon, Kyung-Jung;Lee, Hyun-Ju;Hong, You-Deog;Lee, Suk-Jo;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.581-594
    • /
    • 2012
  • The goal of this study is to investigate the effects of the chemical lateral boundary conditions (CLBCs) on Community Multi-scale Air Quality (CMAQ) simulations of tropospheric ozone for East Asia. We developed linking tool to produce CLBCs of CMAQ from Goddard Earth Observing System-Chemistry (GEOS-Chem) as a global chemistry model. We examined two CLBCs: the fixed CLBC in CMAQ (CLBC-CMAQ) and the CLBC from GEOS-Chem (CLBC-GEOS). The ozone fields by CMAQ simulation with these two CLBCs were compared to Tropospheric Emission Spectrometer (TES) satellite data, ozonesonde and surface measurements for May and August in 2008. The results with CLBC-GOES showed a better tropospheric ozone prediction than that with CLBC-CMAQ. The CLBC-GEOS simulation led to the increase in tropospheric ozone concentrations throughout the model domain, due to be influenced high ozone concentrations of upper troposphere and near inflow western and northern boundaries. Statistical evaluations also showed that the CLBC-GEOS case had better results of both the index of Agreement (IOA) and mean normalized bias. In the case of IOA, the CLBC-GEOS simulation was improved about 0.3 compared to CLBC-CMAQ due to the better predictions for high ozone concentrations in upper troposphere.

A Study on Development of a GIS based Post-processing System of the EFDC Model for Supporting Water Quality Management (수질관리 지원을 위한 GIS기반의 EFDC 모델 후처리 시스템 개발 연구)

  • Lee, Geon Hwi;Kim, Kye Hyun;Park, Yong Gil;Lee, Sung Joo
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.39-47
    • /
    • 2014
  • The Yeongsan river estuary has a serious water quality problem due to the water stagnation and it is imperative to predict the changes of water quality for mitigating water pollution. EFDC(Environmental Fluid Dynamics Code) model was mainly utilized to predict the changes of water quality for the estuary. The EFDC modeling normally accompanies the large volume of modeling output. For checking the spatial distribution of the modeling results, post-processing for converting of the output is prerequisite and mainly post-processing program is EFDC_Explorer. However, EFDC_Explorer only shows the spatial distribution of the time series and this doesn't support overlay function with other thematic maps. This means the impossible to the connection analysis with a various GIS data and high dimensional analysis. Therefore, this study aims to develop a post-processing system of a EFDC output to use them as GIS layers. For achieving this purpose, a editing module for main input files, and a module for converting binary format into an ASCII format, and a module for converting it into a layer format to use in a GIS based environment, and a module for visualizing the reconfigured model result efficiently were developed. Using the developed system, result file is possible to automatically convert the GIS based layer and it is possible to utilize for water quality management.

Analysis on the Spatio-Temporal Distribution of Drought using Potential Drought Hazard Map (가뭄우심도를 활용한 가뭄의 시공간적 분포특성분석)

  • Lee, Joo Heon;Cho, Kyeong Joon;Kim, Chang Joo;Park, Min Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.983-995
    • /
    • 2012
  • In this study, it was intended to analyze the spatio-temporal distribution of historical drought events occurred in Korea by way of drought frequency analysis using SPI (Standardized Precipitation Index), and Drought spell was executed to estimate drought frequency as per drought severity and regions. Also, SDF (severity-duration-frequency) curves were prepared per each weather stations to estimate spatial distribution characteristics for the severe drought areas of Korea, and Potential Drought Hazard Map was prepared based on the derived SDF curves. Drought frequency analysis per drought stage revealed that severe drought as well as extreme drought frequency were prominently high at Geum River, Nakdong River, and Seomjin River basin as can be seen from SDF curves, and drought severity was found as severer per each drought return period in the data located at Geum River, Nakdong River, and Seomjin River basins as compared with that of Seoul weather station at Han River basin. In the Potential Drought Hazard Map, it showed that Geum River, Seomjin River, and Yeongsan River basins were drought vulnerable areas as compared to upper streams of Nakdong River basin and Han River basin, and showed similar result in drought frequency per drought stage. Drought was occurred frequently during spring seasons with tendency of frequent short drought spell as indicated in Potential Drought Hazard Map of different season.

Alternatives Development for Basin-wide Flood Mitigation Planning: A Case Study of Yeongsan River Basin (유역치수계획을 위한 대안수립: 영산강 유역의 사례연구)

  • Yi, Choong-Sung;Shim, Myung-Pil;Lee, Sang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.507-516
    • /
    • 2010
  • The purpose of this study is to propose the alternative development method by means of determining the optimal project size from the economic viewpoint, improving the existing method depending on engineering aspects. To this end, this study defined the flood mitigation projects as the production activities carried out by inputs and outputs, and proposed the alternative development method on the basis of optimizing input and output combinations. This paper, as the case study of the proposed method, developed alternatives for the flood mitigation planning of Youngsan River Basin by determining the optimal project scale. As the result of determining optimal project size, the net benefit of the optimal alternative tended to be dependent on the net benefits of the large individual proposals. Due to such problem, the effect of relatively small individual proposals are underestimated and possibly be excluded from the optimal alternative, which may result in exclusion of the potential damaged regions protected by them from the flood mitigation project. Thus for the selective flood protection by region, individual proposals need to be categorized into the global measures and local measures according to the flood protection area.