• Title/Summary/Keyword: Yeongdeok

Search Result 79, Processing Time 0.02 seconds

Forecasting of Yeongdeok Tourist by Seasonal ARIMA Model (계절 아리마 모형을 이용한 관광객 예측 -경북 영덕지역을 대상으로-)

  • Son, Eun-Ho;Park, Duk-Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.19 no.2
    • /
    • pp.301-320
    • /
    • 2012
  • The study uses a seasonal ARIMA model to forecast the number of tourists of Yeongdeok in an uni-variable time series. The monthly data for time series were collected ranging from 2006 to 2011 with some variation between on-season and off-season tourists in Yeongdeok county. A total of 72 observations were used for data analysis. The forecast multiplicative seasonal ARIMA(1,0,0)$(0,1,1)_{12}$ model was found the most appropriate one. Results showed that the number of tourists was 10,974 thousands in 2012 and 13,465 thousands in 2013, It was suggested that the grasping forecast model is very important in respect of how experts in tourism development in Yeongdeok county, policy makers or planners would establish strategies to allocate service in Yeongdeok tourist destination and provide tourism facilities efficiently.

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

Granite Suite and Supersuite for the Triassic Granites in South Korea (우리나라 트라이아스기 화강암의 스위트/슈퍼스위트 분류)

  • Jwa Yong-Joo;Kim Jong-Sun;Kim Kun-Ki
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.226-236
    • /
    • 2005
  • Using the concept of granite suite/supersuite we hierarchically divided the Triassic granites in South Korea which have spatio-temporally close relationships each other. Among the Triassic granites in the Okcheon belt (western Yeongnam massif), the Baegrok granite and the Jeomchon granite can be grouped into one suite, the Baegrok suite, whereas the Cheongsan granite into the Cheongsan suite. These two suites can be grouped again into a larger supersuite, the Baegrok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Three Triassic granites in the Gyeongsang basin - the Yeongdeok granite, the Yeonghae granite, and the Cheongsong granite - can be grouped into the Yeongdeok suite, Yeonghae suite and Cheongsong suite, respectively. These three suites can be grouped again into a larger supersuite, the Yeongdeok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Nd-Sr isotopic signatures for the Baegrok supersuite are quite distinct from those for the Yeongdeok supersuite, indicating that the source materials of each granitic magma were not identical. The source rocks for the Baegrok supersuite are thought to be a mixture of two crustal components of the Yeongnam massif, whereas those for the Yeongdeok supersuite to be a mixture of the depleted mantle with the crustal components of the Yeongnam massif. The fact that the two contemporaneous granite supersuites were derived from the different sources can be explained by the difference of the tectonic environments where the granitic magmas were produced.

A Study of Fault Site at Byeonggok-myeon, Yeongdeok-gun, South Korea (영덕군 병곡면의 단층 노두 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • In the southeastern part of the Korean Peninsula, the Yangsan Fault, an active fault zone, has developed. Many earthquakes occur around these faults, and the possibility of earthquakes occurring along the branch faults is being discussed. On the other hand, the Yeongdeok Fault is reported in Yeongdeok-gun, which is the northern part of the Yangsan fault. In this study, goemorphic characteristics of a set faults found on the outcrop of the gentle slope of the coast of Byeonggok-myeon were analyzed and granulometric and geochemical characteristics of sediments and other materials, including fault gouges were analyzed. The outcrop of Byeonggok-myeon is the part of the fault core and can be divided into two parts. Theses fault are formed on the upper part of the Mesozoic bedrock and the tertiary sedimentary layer of red sand-supported clasts are covered in several sedimentary units. The faults were normal fault sets, and a number of vertical cracks were developed, and glossy surfaces were observed in the fault area. It appears that these faults have occurred after alluvial deposition had been formed. In the case of samples from fault gouges, there were differences in particle size and geochemical characteristics from the surrounding area.

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

Prevalence of antibodies to Toxoplasma gondii in cattle and pigs reared in eastern areas of Gyeongbuk province (경북 동부지역 소와 돼지에서의 톡소포자충 항체 조사)

  • Seo, Min-Goo;Jang, Young-Sul;Lee, Eun-Mi;Park, No-Chan;Kwak, Dong-Mi
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This study was conducted to determine the prevalence of antibodies to Toxoplasma gondii (TG) in cattle and pigs reared in eastern areas of Gyeongbuk province by ELISA. Among 368 sera collected from 119 cattle farms, 76 (20.7%) sera from 34 (28.6%) farms had antibodies to TG. Fifty (27.2%) out of 184 cattle in Uljin-gun and 26 (14.1%) out of 184 cattle in Yeongdeok-gun were positive. Pyeonghae (50.0%) in Uljin-gun and Dalsan (33.3%) in Yeongdeok-gun had the highest TG antibodies in cattle compared to other areas. Prevalence of TG antibodies in cattle was increased with age. Among 368 sera collected from 43 pig farms, 62 (16.8%) sera from 16 (37.2%) farms had antibodies to TG. Forty (21.7%) out of 184 pigs in Uljin-gun and 22 (12.0%) out of 184 pigs in Yeongdeok-gun were positive. Uljin and Puk (40.0%) in Uljin-gun and Yeonghae (33.3%) in Yeongdeok-gun had the highest TG antibodies in pigs compared to other areas. Prevalence of TG antibodies in sows was higher than that in fattening pigs. Seasonally, prevalence of TG antibodies in pigs was highest in summer (23.4%) and lowest in winter (12.5%). Based on these observations, data indicate that infection by the protozoan parasite TG is widely prevalent in cattle and pigs reared in eastern areas of Gyeongbuk province.

Correlation and Chronology of the Marine Terraces and Thalassostatic Terraces in the Yeongdeok Coast, South Eastern Korean Peninsula (영덕 일대의 해성단구와 해면변동단구의 대비와 편년)

  • Choi, Seong Gil;Chang, Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-96
    • /
    • 2019
  • The Yeongdeok 53m marine terrace (Y53mT), Y43mT, Y33mT, Y24mT, Y19mT and Y11mT distributed along the Yeongdeok coast, southeastern Korean Peninsula are well compared with the thalassostatic terraces of the high terrace 1 (ℓHT1 ; 51m of the relative heights from the river floor), high terrace 2 (ℓHT2 ; 43m), middle terrace 1 (ℓMT1 ; 32m), middle terrace 2 (ℓMT2 ; 25m), lower terrace 1 (ℓLT1 ; 18m) and lower terrace 2 (ℓLT2 ; 10m) respectively, developed along the lower reaches of the Chucksan-cheon and Obo-cheon rivers, judging from the comparison of paleosols (red soils) between the above marine and thalassostatic terraces. Using the Y19mT of the MIS 5e as the key surface, we propose that the terraces of the Y53mT and ℓHT1, Y43mT and ℓHT2, T33mT and ℓMT1, Y24mT and ℓMT2, Y19mT and ℓLT1, and Y11mT and ℓLT2 have been formed at the MIS 11, 9, 7e and 7a (or 7a), 5e and 5a respectively. The red soils have been developed at the Y19mT and ℓLT1 and above them, but not on the Y11mT and ℓLT2 surfaces.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

The Study on the Flight Route of Light Sport Aircraft in Yecheon TMA (예천TMA내 경량항공기 비행경로에 대한 연구)

  • Shin, Dai-Won;Shin, Hong-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • In this study, we surveyed the operating status of the Light Sport Aircraft(LSA) in Korea, and reconstructed the flight route for Light Sport Aircraft in Yecheon TMA. Amended flight routes are LS095(Danyang Airpark $\Leftrightarrow$ Yeongju Airpark), LS096(Andong Airpark $\Leftrightarrow$ Yeongju Airpark), LS098(Yeongdeok Airpark $\Leftrightarrow$ Yeongju Airpark) and LS099(Yeongdeok Airpark $\Leftrightarrow$ Andong Airpark).