• Title/Summary/Keyword: Yellow and green glass beads

Search Result 3, Processing Time 0.02 seconds

A Study on the Provenance of an Opacifying Agent(PbSnO3) in Yellow and Green Glass Beads Excavated from the Korean Peninsula

  • Yu, Heisun;Ro, Jihyun
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • The yellow crystalline material present in yellow and green glass beads excavated from sites in the Baekje region of Korea was previously analyzed through scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction, revealing that the yellow crystalline material was $PbSnO_3$. This material is a pigment that is rarely seen in the Korean peninsula. Furthermore, some studies have been published on the provenance of lead in this material, which revealed no relationship to Korea, China, or Japan. In this study, we collected all accessible results of analyses on the lead isotope ratio of yellow and green glass beads excavated from the Korean peninsula, specifically from 7 sites in the Baekje region(located in the vicinity of Seoul, Wanju, Hwaseong, Osan, Gongju, Buyeo, and Iksan) and 2 sites in the Silla region(located in the vicinity of Gyeongju and Changnyeong). We subsequently investigated the lead provenance of the opacifying agents in the glass beads through comparison with the current extent of the galena data accumulated for the East Asian region, including Korea, China, and Japan, and for Thailand(Kanchanaburi Province), Southeast Asia. Our analysis determined that the lead provenance of the glass beads excavated from the Korean peninsula was Thailand(Kanchanaburi Province). Beyond our results, further studies should seek to determine the production sites of the glass beads. Obtaining and comparing the scientific analyses of glass beads from India and Southeast Asia would enable research on the glass beads trade through the maritime silk road.

An Analysis of the Characteristics of Glass Beads from the Joseon Dynasty Using Non-destructive Analysis (비파괴 분석을 활용한 조선시대 유리구슬의 특성 분석)

  • Lee Sujin;Kim Gyuho
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.71-88
    • /
    • 2023
  • This paper examined the visible characteristics and chemical composition of glass beads from the Joseon Dynasty as well as the associations thereof. It also explored the characteristics and uses of glass beads by region. This study covered a total of 1,819 pieces excavated from 25 locations in the Gyeonggi, Chungcheong, and Gyeongsang regions, of which 537 pieces were analyzed for their chemical composition. Glass beads of the Joseon Dynasty take a variety of shapes such as a Round, Coil, Floral, Segmented, Flat, Oval, and Calabash. Colors vary from shades of brown (brown, lemon yellow) and shades of blue (Bluish-Green, greenish-Blue, Purple-Blue) to shades of white (colorless, white) and shades of green (Green, Greenish-Blue, Greenish-Brown). Brown accounts for the largest percentage, followed by Bluish-Green, greenish-Blue. It was identified that Drawing technique was the most common glass bead production technique of the Joseon Dynasty. Potassium oxide (K2O) was the most common flux agent for glass beads, while the potash glass and mixed alkali glass groups account for the largest quantity. The choice of stabilizers depended on the type of flux agents used, but the most common were calcium oxide (CaO) and aluminum oxide (Al2O3). The potash glass and potash lead glass groups are high in CaO and low in Al2O3, the mixed alkali glass group is high in CaO, and the lead glass group is low in CaO. In terms of the association between color and shape, most of the beads with shade of brown and blue have round shapes of brown and blue have spherical shapes, while the coil shape is prominent in blue beads. A high percentage of green and colorless beads also take the shape of a coil, while white beads in general have a floral shape. In terms of the association between shape and chemical composition, round, floral and segmented shapes account for a high percentage of the potash glass group, while coil and flat shapes are common in the mixed alkali glass group. This paper also analyzed the colorants for each color based on the association between color and chemical composition. Iron (Fe) was used as the colorant for brown and white, and titanium (Ti) and iron were used for light yellow. Purple-Blue was produced by by cobalt (Co), and greenish-Blue, Bluish-Green, green, Greenish-Blue were produced by iron and copper (Cu). Colorless beads had a generally low colorant content.