• Title/Summary/Keyword: Yellow Signal Timing

Search Result 3, Processing Time 0.019 seconds

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.

A Study on the Frequency of Traffic Accidents by Traffic Signal Timing: Focused on Daejeon (『신호현시 표출 방법』에 따른 교통사고 발생빈도 분석 연구: 대전광역시 관내 중심으로)

  • So-sig Yoon;Min-ho Lee;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.20-37
    • /
    • 2023
  • Although traffic signal installations are continuously expanding, the effect of preventing traffic accidents remains unverified. Totally, 7,045 traffic accident data (such as signal violations) registered with TCS were manually searched for a 7-year period from 2013 to 2019 for 1,602 traffic signals in Daejeon Metropolitan City. The top 20 traffic accident intersections were identified, the traffic accident investigation records and field maps were viewed to compare the driving direction and signal phase of the violated vehicle, and the cause of the traffic accident was divided into insufficient signal operation design (operation) and driver negligence (intentional). Results of the analysis revealed that 75% of traffic accidents occurred in thru-left-turn traffic signals and overlap; moreover, extending the yellow time or operating all red signals due to countermeasures against traffic accidents occurring in yellow signals resulted in reduced traffic accidents. Data indicated that Permissive Left Turn requires improvement with the signal operation. In addition, since The Korean National Police Agency is not computerized for traffic accident sites and signal-related data, the lack of manpower necessitates improvement and utilization of TCS when establishing traffic accident prevention measures. It is believed that it will contribute to signal operation by analyzing vast amounts of data collected in the field and presenting improvement measures.

Driving Behavior Characteristics under Red Right Camera Enforcement at Signalized Intersections (신호교차로에서 무인교통단속 규제에 따른 주행 특성)

  • Han, Myungjoo;Lee, Soongbong;Kim, Hyeweon;Lee, YoungIhn;Kim, Sangok
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.63-73
    • /
    • 2016
  • PURPOSES : The objective of this study was to analyze variations in the vehicle driving behavior characteristics on signalized intersections according to the use of traffic enforcement camera (red light camera). METHODS : In order to analyze the driving behavior characteristics on signalized intersections when red light camera are installed, the target sites for investigation were selected depending on whether the red light camera is installed and accident rates increased after the installation. In particular, to analyze the characteristics of dilemma zones in signalized intersections, approach speed and deceleration speed of 3 type vehicles (passing vehicles during a yellow light, stopping at a yellow light, passing vehicles during a green light) were examined. Based on these data, the starting point, ending point, and distance of the dilemma zones were calculated. Also, the locations of increased traffic accidents and decreased accidents after the installation of the equipment were distinguished when analyzing the traffic accident characteristics. RESULTS : Analysis results revealed that there was a tendency for the dilemma zone distance to decrease after the installation of equipment(red light camera) in most sites. This tendency was found to be due to the decrease in the approaching speed of vehicles at intersections after the installation of equipment, resulting in the starting and ending points of dilemma zone to become closer to the stop line. Moreover, analysis showed that the number of traffic accidents decreased for most intersections after the installation of equipment and safety of the intersections increased somewhat. CONCLUSIONS : In general, installation of equipment(red light camera) caused the intersections approaching speed and dilemma zone distance to decrease. Decision-making is difficult for drivers in the dilemma zone, so the decrease in the dilemma zone distance implies an improvement in traffic safety. Furthermore, the number of accidents within intersections significantly decreased after the equipment was installed, leading to the conclusion that installation of the equipment affected the decrease in traffic accidents.