• Title/Summary/Keyword: Yeast one-hybrid

Search Result 42, Processing Time 0.021 seconds

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor

  • Liu, Jin-Ge;Qin, Qiu-lin;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • Three novel Class A genes that encode heat shock transcription factor (HSF) were cloned from Oryza Sativa L using a yeast hybrid method. The OsHSF7 gene was found to be rapidly expressed in high levels in response to temperature, which indicates that it may be involved in heat stress reception and response. Over-expression of OsHSF7 in transgenic Arabidopsis could not induced over the expression of most target heat stress-inducible genes of HSFs; however, the transcription of some HSF target genes was more abundant in transgenic plants following two hours of heat stress treatment. In addition, those transgenic plants also had a higher basal thermotolerance, but not acquired thermotolerance. Collectively, the results of this study indicate that OsHSF7 might play an important role in the response to high temperature. Specifically, these findings indicate that OsHSF7 may be useful in the production of transgenic monocots that can over-express protective genes such as HSPs in response to heat stress, which will enable such plants to tolerate high temperatures.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

  • Kim, Namgyu;Kim, Jinnyun;Bang, Bongjun;Kim, Inyoung;Lee, Hyun-Hee;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

Functional and Physical Interaction between Human Lactate Dehydrogenase B and $Na^+/H^+$ Exchanger Isoform 1

  • Kim, Eun-Hee
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.283-288
    • /
    • 2009
  • The ubiquitous plasma membrane $Na^+/H^+$ exchanger 1 (NHE1) is rapidly activated in response to various extracellular stimuli and maintains normal cytoplasmic pH. Yeast two-hybrid screening was used in order to identify proteins interacting with NHE1 using its cytoplasmic domain as a bait from HeLa cDNA library. One of the interacting cDNA clones was human Lactate dehydrogenase B (LDHB). In vitro translated LDHB was pulled down together with GST-NHE1.cd protein in the GST pull down assay, confirming the interaction in vitro. LDHB antibody immunoprecipitated endogenous LDHB together with NHE1 from H9c2 cells, validating cellular interaction between NHE1 and LDHB. Subsequent analysis revealed that the overexpression of LDHB increased intracellular PH, implying opening of the NHE1 transporter. Moreover, overexpression of LDHB activated caspase 3 and induced cell death, consistent with the expected phenotype of hyper-activation of NHE1. Collectively, our data indicate that LDHB modulates NHE1 activity via physical interaction.

The Alpha Subunit of Go Interacts with Promyelocytic Leukemia Zinc Finger Protein

  • Ghil Sung-Ho
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.407-413
    • /
    • 2004
  • Heterotrimeric GTP binding proteins (G proteins) transduce signals of a variety of hormones and neurotransmitters. Go is one of the most abundant G proteins in the brain and classified as the Gi/Go family due to their sequence homology to Gi proteins. While the Gi proteins inhibit adenylyl cyclase and decrease the intracellular cAMP concentration, the functions of Go is not clearly understood despite their sequence homology to Gi. The promeylocytic leukemia zinc finger protein (PLZF) is a DNA binding transcription factor and is expressed highly in central nervous system (CNS). Several studies reported that PLZF may be involved in regulation segmentation/differentiation during CNS development. Here, I report that the alpha subunit of Go (Go ) interacts with PLZF. The interaction between Goa and PLZF was verified by using GST pulldown assay and co-immunoprecipitation. Our findings indicate that Goa could modulate gene expression via interaction with PLZF during neuronal or brain development.

  • PDF

Synergistic efficacy of LBH and αB-crystallin through inhibiting transcriptional activities of p53 and p21

  • Deng, Yun;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Xie, Huaping;Mo, Xiaoyang;Yan, Yan;Zhou, Junmei;Wang, Yuequn;Ye, Xianli;Wan, Yongqi;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.432-437
    • /
    • 2010
  • LBH is a transcription factor as a candidate gene for CHD associated with partial trisomy 2p syndrome. To identify potential LBH-interacting partners, a yeast two-hybrid screen using LBH as a bait was performed with a human heart cDNA library. One of the clones identified encodes ${\alpha}B$-crystallin. Co-immunoprecipitation and GST pull-down assays showed that LBH interacts with ${\alpha}B$-crystallin, which is further confirmed by mammalian two-hybrid assays. Co-localization analysis showed that in COS-7 cells, ${\alpha}B$-crystallin that is cytoplasmic alone, accumulates partialy in the nucleus when co-transfected with LBH. Transient transfection assays indicated that overexpression of LBH or ${\alpha}B$-crystallin reduced the transcriptional activities of p53 and p21, respectively, Overexpression of both ${\alpha}B$-crystallin and LBH together resulted in a stronger repression of the transcriptional activities of p21 and p53. These results showed that the interaction of LBH and ${\alpha}B$-crystallin may inhibit synergistically the transcriptional regulation of p53 and p21.

Studies on OsABF3 Gene Isolation and ABA Signal Transduction in Rice Plants Against Abiotic Stress (비 생물학적 스트레스 시 벼에서 OsABF3 유전자 분리와 ABA 신호전달 대한 연구)

  • Ahn, Chul-Hyun;Park, Phun-Bum
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.571-577
    • /
    • 2017
  • Abscisic acid (ABA) is an important phytohormone involved in abiotic stress tolerance in plants. The group A bZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis but little is known about their functions in rice. In our current study, we have isolated and characterized a group A bZIP transcription factor in rice, OsABF3 (Oryza sativa ABA responsive element binding factor 3). We examined the expression patterns of OsABF3 in various tissues and time course analysis after abiotic stress treatments such as drought, salinity, cold, oxidative stress, and ABA in rice. Subcellular localization analysis in maize protoplasts using a GFP fusion vector further indicated that OsABF3 is a nuclear protein. Moreover, in a yeast one-hybrid experiment, OsABF3 was shown to bind to ABA responsive elements (ABREs) and its N-terminal region found to be necessary to transactivate a downstream reporter. A homozygous T-DNA insertional mutant of OsABF3 is more sensitive to salinity, drought, and oxidative stress compared with wild type plants & OsABF3OX plants. In addition, this Osabf3 mutant showed a significantly decreased sensitivity to high levels of ABA at germination and post-germination. Collectively, our present results indicate that OsABF3 functions as a transcriptional regulator that modulates the expression of abiotic stress-responsive genes through an ABA-dependent pathway.

A ubiquitin-proteasome system as a determination factor involved in methylmercury toxicity

  • Hwang, Gi-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.46-54
    • /
    • 2006
  • The methylmercury (MeHg) is a toxic environmental pollutant, causing serious neurological and developmental effects in humans. Recent epidemiological studies have indicated that ingestion of MeHg in fish during pregnancy can result in neuroethological effects in the offspring. However, the mechanism underlying the MeHg-toxicity is not fully understood. To elucidate the mechanisms of toxicity of MeHg and of defense against MeHg, we searched for factors that determine the sensitivity of yeast cells to MeHg, and found that overexpression of Cdc34, a ubiquitin-conjugating enzyme (E2) that is a component of the ubiquitin-proteasome (UP) system, induces a resistance to MeHg toxicity in both yeast and human cells. The UP system is involved in the intracellular degradation of proteins. When Cdc34 is overexpressed in cells, ubiquitination reactions are activated and the degradation of certain proteins by the UP system is enhanced. Therefore, it seems likely that certain as-yet-unidentified proteins that increase MeHg toxicity might exist in cons and that toxicity might be reduced by the enhanced degradation of such proteins, mediated by the UP system, when Cdc34 is overexpressed. SCF ubiquitin-ligase is a component of UP system and consists of Skpl, the scaffold protein Cdc53, the RING-finger protein Hrt1, and one member of the family of F-box proteins. The F-box proteins directly bind to the substrates and are the determinants of substrate specificity of SCF. Therefore, we searched for the f-box protein that cofers resistance to MeHg, and found that overexpression of Hrt3 or Yi1224w induced resistance to MeHg toxicity in yeast cells. Since the protein(5) that enhance toxicity of MeHg might plausibly be induced in substrates of both f-box proteins, we next searched for substrate proteins that are recognized by Hrt3 or Y1r224w using two-hybrid screen. We found that Did3 or Crsl interacts with Hrt3; and Eno2 interacts with Yir224w. The yeast cells that overexpressed each those proteins showed hypersensitivity to MeHg, respectively, indicating that those proteins enhance the MeHg toxicity. Both Dld3 and Eno2 are proteins involved in the synthesis of pyruvate, and overexpression of both proteins might induce increase in interacellular levels of pyruvate. Deletion of Yi1006w that transports pyruvate into the mitochondria induced aresistance to MeHg. These results suggest that the promotion of the pyruvate irdlowinto the mitochondria might enhance MeHg toxicity. This study providesimportant keyfor the elucidauon of the molecular mechanism of MeHg toxicity.

  • PDF

Construction of Recombinant Bombyx mori Nuclear Polyhedrosis Virus Using a FLP/FRT System of Yeast, Saccharomyces cerevisiae 2$\mu$m plasmid (Yeast의 FLP/FRT 시스템을 이용한 BmNPV의 유전자 재조합)

  • 강석우;윤은영
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.1
    • /
    • pp.52-59
    • /
    • 1998
  • For the construction of plasmid and bmNPV sarrying the FRT recognition site for the FLP recombinases, we synthesized the wild type FRT dligonucleotides. The target FRT sequences consist of three 13bp repeated DNA sequences; two repeats in a direct orientation and one inverted relative to the other two. In addition, there is an 8bp spacer region between the repeats which determune the orientation of the FRT recombination site. In order to place the FRT site both in target BmNPV genome and the transfer vector, we constructed a plasmid, FRT site both in the target BmNPv genome and the transfer vector, we constructed a plasmid, pFRT$\beta$-gal, carrying the FRT sites within the cloning sites of pSV vector and a recombinant BmNPV, vFRTPH, carrying the FRT sites at a downstream of polyhedrin promotor, respectively. In order to test the functionality of the FLP/FRT site-specific recombination system, vFRTPH, pFRT$\beta$-gal and pHsFLP DNA were co-transfected into BmN-4 cells. The resulting recombinant virus was designated a vFRT$\beta$2-gal. From construction analysis of the vFRT$\beta$2-gal with PCR technique it was concluded that the entire pFRT$\beta$-gal plasmid with $\beta$-galactosidase gene and origines of replication flanked by two functional hybrid FRT sequences. The efficiency of recombination was 8.7%, which was higher than that(2.2%) of recombination between a conventional transfer vector and the wild type BmNPV.

  • PDF