• Title/Summary/Keyword: Yawn Detection

Search Result 3, Processing Time 0.023 seconds

Yawn Recognition Algorism for Prevention of Drowsy Driving (졸음운전 방지를 위한 하품 인식 알고리즘)

  • Yoon, Won-Jong;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.447-450
    • /
    • 2013
  • This paper proposes the way to prevent drowsy driving by recognizing drivers eyes and yawn using a front camera. The method uses the Viola-Jones algorithm to detect eyes area and mouth area from detection face region. In the eyes area, it uses the Hough transform to recognize eye circle in order to distinguish drowsy driving. In the mouth area, it determines whether for the driver to yawn through a sub-window testing by applying a HSV-filter and detecting skin color of the tongue. The test result shows that the recognition rate of yawn reaches up to 90%. It is expected that the method introduced in this paper might contribute to reduce the number of drowsy driving accidents.

  • PDF

Driver Drowsiness Detection Algorithm based on Facial Features (얼굴 특징점 기반의 졸음운전 감지 알고리즘)

  • Oh, Meeyeon;Jeong, Yoosoo;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1852-1861
    • /
    • 2016
  • Drowsy driving is a significant factor in traffic accidents, so driver drowsiness detection system based on computer vision for convenience and safety has been actively studied. However, it is difficult to accurately detect the driver drowsiness in complex background and environmental change. In this paper, it proposed the driver drowsiness detection algorithm to determine whether the driver is drowsy through the measurement standard of a yawn, eyes drowsy status, and nod based on facial features. The proposed algorithm detect the driver drowsiness in the complex background, and it is robust to changes in the environment. The algorithm can be applied in real time because of the processing speed faster. Throughout the experiment, we confirmed that the algorithm reliably detected driver drowsiness. The processing speed of the proposed algorithm is about 0.084ms. Also, the proposed algorithm can achieve an average detection rate of 98.48% and 97.37% for a yawn, drowsy eyes, and nod in the daytime and nighttime.

Measure and Analysis of Open-Close Frequency of Mouth and Eyes for Sleepiness Decision (졸음 판단을 위한 눈과 입의 개폐 빈도수 측정 및 분석)

  • Sung, Jae-Kyung;Choi, In-Ho;Park, Sang-Min;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 2014
  • In this paper, we propose real-time program that measure open-close frequency of mouth and eyes to detect drowsiness of a driver. This program detects a face to the CCD camera image using OpenCV library. Then that extracts each area using CDF for eye detection and Active Contour for mouth detection based on detected face. This system measures each frequency of Open-Close using extracted area data of eyes and mouth. We propose foundation technique how to perform sleepiness decision of users based on measurement data.