• 제목/요약/키워드: Yaw Estimation

검색결과 81건 처리시간 0.012초

휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정 (Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter)

  • 전명근;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

요각속도 추정을 위한 새로운 차량 모델의 개발 (A Development of New Vehicle Model for Yaw Rate Estimation)

  • 배상우;신무현;김대균;이장무;이재형;탁태오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF

비전 시스템에 의한 풍력발전기의 Yaw방향 추정 (The Estimation of Yaw Direction of Wind Turbine Using Vision System)

  • 정명희;정준익;노도환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.199-201
    • /
    • 2006
  • 풍력발전기에 있어서 블레이드의 Yaw방향 제어는 끊임없이 변화하는 풍향에 대해 효율의 극대화와 블레이드의 강도 및 진동측면에서 대단히 중요하다. 기존의 블레이드 Yaw 방향 측정은 접촉 및 비접촉 센서가 이용되어왔다. 본 논문에서는 풍력발전기의 원격모니터링 시스템에서 기본적으로 설치되는 카메라를 이용하여 블레이드의 Yaw방향을 측정하는 방법을 제안한다. 블레이드가 풍향에 따라 회전할 때 영상 누적을 행하고, 누적영상에 대해 경계점을 추정하여 타원의 궤적을 추정한다. 추정된 경계점들을 이용하고 최소자승법을 적용하여 타원방정식을 추정하고, 장축과 단축을 연산한다. 장축과 단축의 변화를 이용하여 카메라의 촬영방향의 기준점으로부터 Yaw방향의 변화를 정량적인 값으로 산출하여 이를 바탕으로 Yaw회전각을 추정한다. Yaw 방향 추정의 검증을 위해 블레이드 속도와 Yaw 방향의 제어가 가능한 모형풍력발전기를 제작하고 실험을 통하여 제안한 추정알고리즘의 유효성을 검증한다.

  • PDF

평판 모터 상태 관측을 위한 비선형 관측기 (A Nonlinear Observer for the Estimation of the Full State of a Sawyer Motor)

  • 김원희;정정주
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2292-2297
    • /
    • 2010
  • To improve the performances of Sawyer motors and to regulate yaw rotation, various feedback control methods have been developed. Almost all of these methods require information on the position, velocity or full state of the motor. Therefore, in this paper, a nonlinear observer is designed to estimate the full state of the four forcers in a Sawyer motor. The proposed method estimates the full state using only positional feedback. Generally, Sawyer motors are operated within a yaw magnitude of several degrees; outside of this range, Sawyer motors step out. Therefore, this observer design assumes that the yaw is within ${\pm}90^\b{o}$. The convergence of the estimation error is proven using the Lyapunov method. The proposed observer guarantees that the estimation error globally exponentially converges to zero for all arbitrary initial conditions. Furthermore, since the proposed observer does not require any transformation, it may result in a reduction in the commutation delay. The simulation results show the performance of the proposed observer.

무향 칼만 필터를 이용한 무인 운송체의 자세 추정 (Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter)

  • 송경섭;고낙용;최현승
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.265-274
    • /
    • 2019
  • 본 논문은 저가형 AHRS(: Attitude Heading Reference System)센서를 이용하여 무인 운송체(Unmanned vehicle)의 자세를 무향 칼만 필터 (Unscented Kalman filter)통해 추정하는 방법을 제안한다. 측정된 가속도와 지구자기장 값을 이용하여 UKF의 보정 단계에서 사용될 자세를 계산한다. 롤 (roll)과 피치 (pitch)는 가속도로부터 구해지며 요 (yaw)는 지구 자기장을 이용하여 연산한다. 이때 사용되는 지구자기장 측정값은 강철 효과(hard-iron effect)와 연철 효과(soft-iron effect)에 의해 쉽게 왜곡되기 때문에 계산된 요의 불확실성이 롤이나 피치의 불확실성에 비하여 크다. 본 논문은 이러한 불확실성을 줄이기 위하여 측정된 지구자기장에 포함된 편차성분을 추정하고 보정하여 더 정밀한 요값을 구한다. 제안된 방법을 수조에서의 무인 운송체 항법 실험을 통하여 검증하였다. 실험결과, 자세 추정 성능이 개선되고 이에 따라 위치 추정 성능도 개선됨을 확인하였다.

Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

  • Nguyen, Binh-Minh;Wang, Yafei;Fujimoto, Hiroshi;Hori, Yoichi
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.899-910
    • /
    • 2013
  • This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip angle estimation is achieved by treating the combination of model uncertainties and external disturbances as extended states. Active front steering and direct yaw moment are integrated to manipulate sideslip angle and yaw rate of the vehicle. Instead of decoupling control design method, a new control scheme, "two-input two-output controller", is proposed. The extended states are utilized for disturbance rejection that improves the robustness of lateral stability control system. The effectiveness of the proposed methods is verified by computer simulations and experiments.

타이어 요마크로부터 임계속도 추정의 불확실성 해석 (Analysis of Uncertainties in Estimation of Critical Speeds from Tire Yaw Marks)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.361-370
    • /
    • 2015
  • There will inevitably be errors and uncertainties in tire yaw mark related critical speed formula, which is derived merely from the relationship between the centrifugal force and the friction force acting on the point-mass vehicle. Constructing and measuring yaw marks through appropriate simulation works have made it possible to perform uncertainty analysis in calculation of critical speeds under variation of variety of conditions and parameters while existing yaw mark experimental tests have not performed properly. This paper does not present only the critical speed analysis results for parametric sensitivity and uncertainty of chord and middle ordinate, coefficient of friction and road grade, but also modeling uncertainty such as variation of braking level during turning and vehicle size. The yaw mark analysis methods and results may be now applied in practice of traffic accident investigation.

ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘 (Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion)

  • 이동우;이경수;이재완
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate)

  • 유요한
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.