• Title/Summary/Keyword: Yard AGV

Search Result 32, Processing Time 0.026 seconds

Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model (크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee, Kwon-Hee;Park, Hyung-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PLMSL (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, the DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the structural responses. Then, the GRG(Generalized Reduced Gradient) method built in Excel is adopted to determine the optimum. The objective function is set up as weight. On the contrary, the design variables are considered as transverse, longitudinal and wheel beam's thicknesses, and the constraints are the maximum stresses generated by four loading conditions.

  • PDF

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Lee K.-H.;Min K. A.;PARK H. W.;Han D. S.;Han G. J.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.415-420
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Technology) is the horizontal transfer system for yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, structural optimization for a mover of shuttle car is performed to minimize the weight satisfying design criteria. The objective function is set up as weight. On the contrary, the design variables are transverse, longitudinal and wheel beams' thicknesses and its height, and the constraints are considered as strength and stiffness.