• 제목/요약/키워드: Yale Face Database B

검색결과 18건 처리시간 0.02초

2D - PCA와 영상분할을 이용한 얼굴인식 (Face Recognition using 2D-PCA and Image Partition)

  • 이현구;김동주
    • 디지털산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.31-40
    • /
    • 2012
  • Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.

조명변화에 강인한 전처리 및 얼굴특징 (Preprocessing and Facial Feature Robust to Illumination Variations)

  • 김동주;이상헌;김현덕
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권7호
    • /
    • pp.503-506
    • /
    • 2013
  • 본 논문에서는 기존의 CS-LBP를 변형한 ECSP 전처리 기법과 조명에 강인한 D2D-PCA 특징을 결합하는 얼굴인식 방법에 대하여 제안한다. 제안하는 얼굴인식 방법의 성능평가는 Yale B 데이터베이스 상에서 기존의 다양한 이진패턴 변환 영상과 얼굴인식에 널리 사용되고 있는 PCA 및 2D-PCA 특징을 이용하여 수행되었다. 실험 결과, 제안하는 얼굴인식 방법은 다른 방법들에 비하여 가장 높은 인식 성능을 보였으며, 이로부터 제안 시스템이 조명 변화에 강인한 얼굴인식 방법임을 확인하였다.

픽셀값 변환 기법을 더한 데이터 복원공격에의한 연합학습의 프라이버시 침해 (Invasion of Pivacy of Federated Learning by Data Reconstruction Attack with Technique for Converting Pixel Value)

  • 오윤주;최대선
    • 정보보호학회논문지
    • /
    • 제33권1호
    • /
    • pp.63-74
    • /
    • 2023
  • 프라이버시 침해에 대한 안전성을 보장하기 위해 매개변수를 주고받아 학습하는 연합학습이 대두되고 있다. 하지만 최근 그래디언트를 이용하여 학습 데이터를 유출하는 논문이 발표되었다. 본 논문은 연합학습 환경에서 그래디언트를 이용하여 학습 데이터를 유출하는 실험을 구현하였으며, 학습 데이터를 유출하는 기존 공격을 개선하여 복원성능을 높이는 방법을 제안한다. 제안 방법에 대해 Yale face database B, MNIST dataset를 이용하여 실험한 결과, 연합학습 성능이 accuracy=99~100%로 높을 때 100개의 학습 데이터 중 최대 100개의 데이터를 식별 가능한 수준으로 복원하여, 연합학습이 프라이버시 침해로부터 안전하지 않다는 것을 보인다. 또한, 픽셀단위의 성능(MSE, PSNR, SSIM)과 Human Test에 의한 식별적인 성능을 비교함으로써 픽셀에 기반한 성능보다 식별적인 성능의 중요성을 강조하고자 한다.

Face Recognition Based on the Combination of Enhanced Local Texture Feature and DBN under Complex Illumination Conditions

  • Li, Chen;Zhao, Shuai;Xiao, Ke;Wang, Yanjie
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.191-204
    • /
    • 2018
  • To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.

Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식 (Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA)

  • 이현구;김동주
    • 디지털산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

CNN을 적용한 조명변화에 강인한 얼굴인식 연구 (Research on Robust Face Recognition against Lighting Variation using CNN)

  • 김연호;박성욱;김도연
    • 한국전자통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.325-330
    • /
    • 2017
  • 얼굴인식 기술은 지난 수십 년간 연구되어온 분야로서 보안, 엔터테인먼트, 모바일 서비스 등 다양한 영역에서 활용되고 있다. 얼굴인식 기술이 가진 주된 문제점은 밝기, 조명각도, 영상 회전등의 환경적 변화 요소에 따라 인식률이 현저하게 감소된다는 것이다. 따라서 본 논문에서는 최근 많은 계산량을 처리할 수 있는 컴퓨터 하드웨어와 알고리즘의 발전으로 재조명 받고 있는 CNN을 이용해 조명변화에 강인한 얼굴인식 방법을 제안하였다. 이후 성능검증을 위해 기존의 얼굴인식 알고리즘인 PCA, LBP, DCT와 결과 비교를 진행하였으며, 각각 9.82%, 11.6%, 4.54%의 성능 향상을 보였다. 또한 기존 신경망을 적용한 얼굴인식 연구결과 비교에서도 5.24%의 성능 향상을 기록하여 최종 인식률 99.25%를 달성하는 결과를 보였다.

딥러닝을 PC에 적용하기 위한 메모리 최적화에 관한 연구 (A Study On Memory Optimization for Applying Deep Learning to PC)

  • 이희열;이승호
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.136-141
    • /
    • 2017
  • 본 논문에서는 딥러닝을 PC에 적용하기 위한 메모리 최적화에 관한 알고리즘을 제안한다. 제안된 알고리즘은 일반 PC에서 기존의 딥러닝 구조에서 요구되는 연산처리 과정과 데이터 량을 감소시켜 메모리 및 연산처리 시간을 최소화한다. 본 논문에서 제안하는 알고리즘은 분별력이 있는 랜덤 필터를 이용한 컨볼루션 층 구성 과정, PCA를 이용한 데이터 축소 과정, SVM을 사용한 CNN 구조 생성 등의 3과정으로 이루어진다. 분별력이 있는 랜덤 필터를 이용한 컨볼루션 층 구성 과정에서는 학습과정이 필요치 않아서 전체적인 딥러닝의 학습시간을 단축시킨다. PCA를 이용한 데이터 축소 과정에서는 메모리량과 연산처리량을 감소시킨다. SVM을 사용한 CNN 구조 생성에서는 필요로 하는 메모리량과 연산 처리량의 감소 효과를 극대화 시킨다. 제안된 알고리즘의 성능을 평가하기 위하여 예일 대학교의 Extended Yale B 얼굴 데이터베이스를 사용하여 실험한 결과, 본 논문에서 제안하는 알고리즘이 기존의 CNN 알고리즘과 비교하여 비슷한 성능의 인식률을 보이면서 연산 소요시간과 메모리 점유율에 있어 우수함이 확인되었다. 본 논문에서 제안한 알고리즘을 바탕으로 하여 일반 PC에서도 많은 데이터와 연산처리를 가진 딥러닝 알고리즘을 구현할 수 있으리라 기대된다.

망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구 (A Study on Reducing Learning Time of Deep-Learning using Network Separation)

  • 이희열;이승호
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.273-279
    • /
    • 2021
  • 본 논문에서는 딥러닝 구조를 분할을 이용한 개별 학습을 수행하여 학습시간을 단축하는 알고리즘을 제안한다. 제안하는 알고리즘은 망 분류 기점 설정 과정, 특징 벡터 추출 과정, 특징 노이즈 제거 과정, 클래스 분류 과정 등의 4가지 과정으로 구성된다. 첫 번째로 망 분류 기점 설정 과정에서는 효과적인 특징 벡터 추출을 위한 망 구조의 분할 기점을 설정한다. 두 번째로 특징 벡터 추출 과정에서는 기존에 학습한 가중치를 사용하여 추가 학습 없이 특징 벡터를 추출한다. 세 번째로 특징 노이즈 제거 과정에서는 추출된 특징 벡터를 입력받아 각 클래스의 출력값을 학습하여 데이터의 노이즈를 제거한다. 네 번째로 클래스 분류 과정에서는 노이즈가 제거된 특징 벡터를 입력받아 다층 퍼셉트론 구조에 입력하고 이를 출력하고 학습한다. 제안된 알고리즘의 성능을 평가하기 위하여 Extended Yale B 얼굴 데이터베이스를 사용하여 실험 하였다. 실험 결과, 1회 학습에 소요되는 시간의 경우 제안하는 알고리즘이 기존 알고리즘 기준 40.7% 단축하였다. 또한 목표 인식률까지 학습 횟수가 기존 알고리즘과 비교하여 단축하였다. 실험결과를 통해 1회 학습시간과 전체 학습시간을 감소시켜 기존의 알고리즘보다 향상됨을 확인하였다.