• Title/Summary/Keyword: YPL

Search Result 10, Processing Time 0.022 seconds

Antifungal Mechanism of Pseudomonas stutzeri YPL-l for Biocontrol of Fusarium solani causing Plant Root Rot (식물근부균 Fusarium solani에 대한 Pseudomonas stutzeri YPL-1의 생물학적 방제기작)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 1990
  • For the selection of powerful antagonistic bacterium for biological control of soilborne Fusarium solani causing root rot of many important crops, the best YPL-1 strain was selected among 300 strains of bacteria isolated from rhizosphere in ginseng root rot-suppressive soil. The strain was identified to be a species to Pseudomonas stutzeri. With in vitro fungal inhibition tests, antagonistic substance of P. stutzeri YPL-1 against F. solani was presumed to be heat unstable, macromolecular substances such as protein. Also, it was shown that antifungal activity of P. stutzeri YPL-1 increased in proportion to its chitinase production. P. stutzeri YPL-M122 (chi-, lam -) which was deprived of the productivity of chitinase and laminarinase by NTG mutagenesis had lost antifungal activity, completely. And P. stutzeri YPL-MI53 (chi-) had only 4.1% of its antifungal activity. P. stutzeri YPL-1 was not able to produce any extracellular siderophore in iron-deficent minimal medium. It is confident that the antifungal mechanism of P. stutzeri YPL-1 for biocontrol of F. solani depends on lysis rather than antibiosis :the mechanism of lysis appears to involve enzymatic degradation of the cell will components of F. solani by hydrolytic enzymes of more chitinase and less laminarinase.

  • PDF

Increased Antifungal Activity with Genetic Development of Antagonistic Pseudomonas stutzeri YPL-1 against Fusariym solani (식물근부균 Fusarium Solani에 길항하는 생물방제균 Pseudomonas stutzeri YPL-1의 유전공학적 개발)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.437-441
    • /
    • 1990
  • For the genetic development of more powerful antagonistic Pseudomom - YPL-1 as a biocontxol agent against soilborne plant pathogenic Fuaarium solani causing root rot of many important crops, mutants improving the productivity of chitinase were obtained by mutation with UV radiation or NTG treatment, P. stutzeri YPL-M26 (UV mutant) and P. stutzeri YPL-MI78 (NTG mutant) could improve the productivity of chitinase by 2.5 and 2.0 times, and its antifungal activity by 1.7 and 1.5 times, respectively. The antifungal mechanism of P. stutzeri YPL-M26 was caused by lysis of the fungal cell wall by hydrolytic enzymes such as chitinase. The antifungal activity of crude chitinase of P. stutzeri YPLM26 on the mycelial growth of F. solani was observed to be much higher than that of the original strain. The enzymes produced by P. stutzeri YPL-M26 were the same as the original strain in enzymatic properties such as optimal pH and temperature.

  • PDF

The role and characterization of .betha.-1, 3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1

  • Lim, Ho-Seong;KiM, Sang-Dal
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 1995
  • An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and .betha.-1, 3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a .betha.-1, 3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused absnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of .betha.-1, 3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40.deg.C and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40.deg.C, with a half-life of 40 min at 60.deg.C.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Transformation of Antagonistic Pseudomonas stutzeri YPL-1 against Root Rotting Fungi Fusarium solani by Plasmid DNA (생물방제균 Pseudomonas stutzeri YPL-1의 형질전환 조건)

  • 김용수;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.454-459
    • /
    • 1990
  • For the genetic multipurpose of antagonistic abilities of Pseudomom etutzeri YPL-1 aganist Fusarium solani causing root rot of many important crops by genetic engineering, optimal conditions for transformation of P-stutzeri YPL-1 by pKT230 were investigated. Maxium frequency of the transformation was achieved when cells were harvested at early exponential growth phase. The highest transformation efficiency was obtained when the competent cells were exposed to chilled transformation buffer containing 20 mM RbCI, 100 mM $CaCl_2$ and added l${\mu}g$/ml of plasmid DNA. The pH optimum for transformation was 6.5. When the bacterial cells that were incubated during 60 minutes for the competence were brought in contact with plasmid DNA, the transformations were obtained in the best frequency. It was formed that transformation frequency was 2 ~$6 \times 10^{-6}$ under the optimal conditions.

  • PDF

Antigenicity of Intralipidos in Guinea Pigs, Mice and Rats (기니픽, 마우스 그리고 랫드에서 Intralipidos의 항원성)

  • Yi, Beoung-Hi;Che, Jeong-Hwan;Li, Guang-Xun;Kang, Byeong-Cheol;Lee, Won-Woo;Ihm, Jong-Hee;Jung, Ji-Youn;Lee, Yong-Soon
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.459-463
    • /
    • 1998
  • The antigenicity of intralipidos was investigated in guinea pig, mice and rats. Antigenicity tests-active systemic anaphylaxis (ASA), passive systemic anaphylaxis (PSA), passive cutaneous anaphylaxix (PCA) of this materials were performed. The results were followed: 1. After sensitizaion with YPL, YPL+intralipidos, and intralipidos, emulsified with complete Freund's adjuvant (CFA), guinea pigs didn's show any anaphylatic shock symptom in the ASA test, 2. These materials didn't show any anaphylatic shock symptom in the PSA test, 3. After sensitization with antisera of YPL, YPL+intralipidos, and intralipidos sensitized mice, blue spots were not observed on the hypodermis of back of rats in the PCA test. From the results of this investigation, the antigenicity of YPL, intralipidos was negative under the present experimental condition.

  • PDF

Development of Simple Colorimetric Method for Detecting Contamination of Liquid Spawn of Oyster Mushroom by pH Indicator (pH지시약을 이용한 느타리버섯 액체종균 오염 간이진단법 개발)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • For the detection of contaminated liquid spawn, we selected suitable medium, indicator and developed method of diagnosis. The growth of pathogenic bacteria, Pseudomonas sp., and fungi, Trichoderma sp., in YPL media was better than in PDA and NA. In addition, the changes of color and absorbance of media were obviously showed when contaminated liquid spawn by pathogenic bacteria and fungi was incubated on YPL including phenol red for 48 hour at $25^{\circ}C$. The color of YPLP after incubating of infected liquid spawn by Pseudomonas sp. and Trichoderma sp. were changed from orange to red and to scarlet, respectively. Whereas, the color of YPLP after incubation of only Pleurotus ostreatus indicated yellow at liquid spawn. Therefore, it is possible to easily distinguish contaminated liquid spawn by color of change in YPLP.

Cold shock sensitive growth of Bacillus subtilis mutants deleted for genes involved in fatty acid synthesis (지방산 생합성 관련 유전자 결손 Bacillus subtilis 균주들의 저온충격 민감성 생장)

  • Kim, Do Hyung;Lee, Sang Soo
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • To investigate the role of bkdR, sigL, yplP, and des genes which were known to be involved in fatty acid synthesis and sensitive at low temperature, deletion mutants of Bacillus subtilis CU1065 and JH642 were constructed. To determine the low temperature sensitivity of these genes, we compared the growth curves of cells at $37^{\circ}C$ and $15^{\circ}C$. At $37^{\circ}C$, wild type and deletion mutants showed almost similar growth but only bkdR deletion strain at $15^{\circ}C$ showed very slow growing compared with wild type. At $15^{\circ}C$ sigL and yplP deletions were somewhat slower or similar to those of wild type strain. Double and triple mutants for bkdR, sigL, yplP deletions were constructed and grown at $20^{\circ}C$ in LB agar to investigate cold sensitive growth. Double or triple deletions including bkdR deletion showed cold sensitive growing. In order to identify more clearly cold sensitive growth, the experiments were carried out under cold shock conditions in which the temperature was lowered from $37^{\circ}C$ to $15^{\circ}C$ at the point of 0.4 optical densities at 600 nm. In these cold shock experiments, only bkdR deletion showed significantly lower growing and additional des deletion increases cold sensitivity. The bkdR activates the bkd operon, which catabolized isoleucine, valine and leucine, amino acids and produce precursors for the synthesis of branched fatty acids. At cold shock growing of bkdR deletion strain, isoleucine recovered cold sensitivity of bkdR deletion but valine did not restore cold sensitivity. Isoleucine is used as a precursor for the synthesis of anteiso-branched fatty acids. On the other hand, valine is used as a precursor for the synthesis of iso-branched fatty acids. This indicates that anteiso-branched fatty acid plays an important role at the cold shock condition.

Ovarian and Fat Body Yolk Protein Synthesis in Culex piplens pallens (홍모기(Culex pipiens pallens) 지방체와 난소에서의 난황단백질합성에 관한 연구)

  • 이승훈;박영민;성기창
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.416-424
    • /
    • 1993
  • Ovarian Yolk protein (YP2) synthesis has been investigated in mosquito, Culex pipiens pallens. Yolk protein amount which was syntheized in fat body, accumulated into ovary were analyzed by Rocket immunoelectrophoresis and in vitro organ culture. The result was that yolk protein synthesis began to occur at 6hrs after blood meal, reached at maximum level by 24hrs, and was completed within 48hrs. Yolk protein accmulation into the ovary began to start at 6hrs and coutinued for up to 60hrs after blood meal. Extract from 0, 24, 48, 72hrs ovaries after blood meal were analyzed by electrophoresis and Western blotting. The result was that 24hrs ovary contain one yolk protein(YP1), and 48, 72hrs ovaries contain two kinds of yolk proteins(YPl and YP2). When 48hr ovaries and fat bodies were incubated in $^3$H-leucine contained medium, protein synthesis was not occurred in fat body, but ovary synthesized much protein contained yolk protein (YP2). The result of crossed immunoelectrophoresis represented the same immunity between YPl and YP2. The present data suggest that ovary synthesize yolk protein(YP2) in mosquito, Culex pipiens pallens.

  • PDF

Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress

  • Kim, Il-Sup;Yun, Hae-Sun;Jin, In-Gnyol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.207-217
    • /
    • 2007
  • The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.