• Title/Summary/Keyword: YPEL3

Search Result 2, Processing Time 0.015 seconds

Expression of Yippee-Like 5 (YPEL5) Gene During Activation of Human Peripheral T Lymphocytes by Immobilized Anti-CD3 (인체 말초혈액의 활성화 과정 중 yippee-like 5 (YPEL5) 유전자의 발현 양상)

  • Jun, Do-Youn;Park, Hye-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1641-1648
    • /
    • 2007
  • Yippee-like proteins, which have been identified as the homolog of Drosophila yippee protein containing a zinc-finger domain, are known to be highly conserved among eukaryotes. However, their functional roles are still poorly understood. Recently we initiated ordered differential display (ODD)-polymerase chain reaction (PCR) to isolate genes of which expressions are altered following activation of human T cells. On the ODD-PCR image, one PCR-product detected in unstimulated T cells was not detectable at the time when the activated T cells traversed near $G_1/S$ boundary following activation by immobilized anti-CD3. Cloning and nucleotide sequence analysis revealed that the PCR-product was yippee-like 5 (YPEL5) gene, which was known as a human homolog of the Drosophila yippee gene. Northern blot analysis confirmed the amount of ${\sim}2.2$ kb YPEL5 mRNA expression detectable in unstimulated T cells was sustained until 1.5 hr after activation and then rapidly declined to undetectable level by 5 hr. Ectopic expression of YPEL5 gene in human cervix epitheloid carcinoma HeLa cells caused a significant reduction in cell proliferation to the level of 47% of the control. Expression of GFP-YPEL5 fusion protein in HeLa cells showed its nuclear localization. These results demonstrated that the expression level of human YPEL5 mRNA was negatively regulated in the early stage of T cell activation, and suggested that YPEL5 might exert an inhibitory effect on the cell proliferation as a nuclear protein.

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.