• 제목/요약/키워드: YOLOv8x

검색결과 6건 처리시간 0.02초

조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가 (Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring)

  • 박수호;김흥민;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.297-309
    • /
    • 2023
  • 최근 조식동물로 인한 갯녹음 현상으로 인해 연안 생태계 및 어장환경의 황폐화가 가속화되고 있다. 이러한 갯녹음 현상을 모니터링하고 방지대책을 세우기 위해서는 광범위한 해역에 대한 원격탐사 기반의 모니터링 기술 도입이 필요하다. 본 연구에서는 수중에서 촬영된 동영상으로부터 조식동물을 탐지하고 모니터링하기 위한 딥러닝 기반 객체 탐지 모델의 강인성(robustness)을 비교 분석하였다. 우리나라 연안의 대표적인 조식동물 7종을 대상으로 이미지 데이터셋을 구축하였으며, 이를 활용하여 딥러닝 기반 객체 탐지 모델인 You Only Look Once (YOLO)v7과 YOLOv8을 훈련시켰다. 총 6개의 YOLO 모델(YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x)에 대해 탐지 성능과 탐지 속도를 평가하였으며, 수중환경에서 촬영 시 발생할 수 있는 다양한 이미지 왜곡에 대해서 강인성 평가를 실시하였다. 평가결과 YOLOv8 계열 모델이 파라미터(parameter) 수 대비 더 높은 탐지 속도(약 71-141 FPS [frame per second])를 보였다. 탐지 성능에 있어서도 YOLOv8 계열 모델(mean average precision [mAP] 0.848-0.882)이 YOLOv7 계열 모델(mAP 0.847-0.850)에 비해 더 높은 성능을 보이는 것을 확인하였다. 모델의 강인함에 있어서 형태 왜곡에 대해서는 YOLOv7 계열 모델이 YOLOv8 계열 모델에 비해 강인한 것을 확인하였으며, 색상 왜곡에 대해서는 YOLOv8 계열 모델이 상대적으로 강인한 것을 확인 하였다. 따라서 실해역에서 수중 영상 촬영 시, 형태 왜곡은 발생 빈도가 낮으며 색상 왜곡은 연안에서 빈번하게 발생한다는 점을 고려했을 때, 연안해역에서 조식동물 탐지와 모니터링을 위해서는 YOLOv8 계열 모델을 활용하는 것이 타당한 것으로 판단된다.

YOLOv8x를 활용한 우회전 시 보행자 사고 예방 시스템 (A Scheme Pedestrian Accident Prevention System for Right Turn using YOLOv8x)

  • 김석진;박상민;이찬휘;장세영;장우혁;주수민;이근호
    • 사물인터넷융복합논문지
    • /
    • 제10권6호
    • /
    • pp.117-123
    • /
    • 2024
  • 기존 교차로 내 우회전은 운전자가 판단에 전적으로 의지하는 방법이었으나, 2023년 교차로 통행에 관한 법률이 횡단보도를 통행하거나, 통행하려는 보행자가 있을 시 일시정지 후 통행하도록 개정되었다. 하지만, 대부분의 운전자들은 개정된 법안을 알지 못하여 여전히 기존 방법으로 우회전하는 차량이 많다. 또한, 기존 방법으로 통행해도 "어차피 걸리지 않아" 라는 안일한 생각을 가지는 운전자가 대다수다. 더불어, 통행 방법을 올바르게 아는 운전자도 사각지대에 보행자가 가려져 우회전 시도하는 도중 급정거하는 일도 자주 발생한다. 이는 보행자에게 매우 위협적인 상황이다. 본 논문은 사각지대에 가려지는 보행자 등 보행자들의 다양한 사고를 예방하고자 YOLOv8x 모델을 활용하여 운전자에게 보행자 유무에 따라 경고를 주는 시스템을 제안한다. 해당 시스템은 보행자 유무를 기준으로 점등하기에 빛의 유도 효과를 유발한다. 이는 운전자가 자연스럽게 보행자를 인지할 수 있어 보행자 사고 예방이 가능하다.

인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출 (Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence)

  • 한창화
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.873-879
    • /
    • 2023
  • 본 연구는 인공지능(AI)을 사용하여 흉부 엑스레이 이미지에서 이물질을 탐지하는 방법을 탐구하였다. 의료영상학, 특히 흉부 엑스레이는 폐렴이나 폐암과 같은 질병을 진단하는 데 매우 중요한 역할을 한다. 영상의학 검사가 증가함에 따라 AI는 효율적이고 빠른 진단을 위한 중요한 도구가 되었다. 하지만 이미지에는 단추나 브래지어 와이어와 같은 일상적인 장신구를 포함한 이물질이 포함될 수 있어 정확한 판독을 방해할 수 있다. 본 연구에서는 이러한 이물질을 정확하게 식별하는 AI 알고리즘을 개발하였고, 미국 국립보건원 흉부 엑스레이 데이터셋을 가공하여 YOLOv8 모델을 기반으로 처리하였다. 그 결과 정확도, 정밀도, 리콜, F1-score가 모두 0.91에 가까울 정도로 높은 탐지 성능을 보였다. 이번 연구는 AI의 뛰어난 성능에도 불구하고 이미지 내 이물질로 인해 판독 결과가 왜곡될 수 있는 문제점을 해결함으로써 영상의학 분야에서 AI의 혁신적인 역할과 함께, 임상 구현에 필수적인 정확성에 기반하여 신뢰성을 강조하였다.

라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석 (Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5)

  • 김보람;박미소;김재원;도예빈;오세윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1249-1258
    • /
    • 2022
  • 해양쓰레기란 고의 또는 부주의로 해안에 방치되거나 해양으로 유입·배출되어 해양환경에 해로운 결과를 미치거나 미칠 우려가 있는 물질로 정의된다. 본 연구에서는 효율적인 해양쓰레기 수량 파악 방법 및 변화량 분석을 위하여 객체 탐지 기법을 이용한 해양쓰레기 탐지 및 해양쓰레기의 변화량 분석을 수행하였다. 연구지역은 거제도 북동부 유호 몽돌 해수욕장이며 2022년 9월 12일부터 10월 14일까지 32일 동안 15분 간격으로 수집한 이미지를 통해 변화량을 분석하였다. One-Stage 방식의 객체 탐지 모델인 YOLOv5x를 이용한 해양쓰레기 탐지는 페트병 mAP 0.869, 스티로폼 부표 mAP 0.862의 성능을 도출하였다. 결과적으로 해양쓰레기는 8일 간격으로 큰 감소 폭을 보였으며, 성상별로는 스티로폼 부표의 수량이 3배 정도 많고 변화폭 역시 더 크게 나타남을 파악하였다.

YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석 (Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization)

  • 임윤교;윤유정;강종구;김서연;정예민;최소연;서영민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.997-1008
    • /
    • 2023
  • 해상의 선박탐지는 다양한 방법으로 수행될 수 있는데, 위성은 광역적인 감시가 가능하고, 특히 합성개구레이더(Synthetic Aperture Radar, SAR) 영상은 주야간 및 전천후로 활용될 수 있다. 본 연구에서는 SAR 영상으로부터 효율적인 선박 탐지 방법을 제시하기 위하여, Sentinel-1 영상에 You Only Look Once Version 5 (YOLOv5) 모델을 적용하여 선박 탐지를 수행하고, 편파별 개별 모델과 통합 모델의 차이 및 편파별 정확도 특성을 분석하였다. 파라미터가 작고 가벼운 YOLOv5s와 파라미터가 많지만 정확도가 높은 YOLOv5x 두가지 모델에 대하여 각각 (1) HH, HV, VH, VV 각 편파별로 나누어 학습/검증 및 평가 그리고 (2) 모든 편파의 영상을 사용하여 학습/검증 및 평가를 실시한 결과, 네 가지 실험에서 모두 0.977 ≤ AP@0.5 ≤ 0.998의 비슷하면서 매우 높은 정확도를 나타냈다. 이러한 결과를 현업시스템의 관점에서 보면, 가벼운 YOLO 모델(YOLOv5s, YOLOv8s 등)로 4개 편파 통합 모델을 구축하는 것이 실시간 선박탐지에 효과적임을 시사하는 것이다. 이 실험에서 사용한 영상은 19,582장이었지만, Sentinel-1 이외에도 Capella, ICEYE 등 다른 SAR 영상을 추가적으로 활용한다면, 보다 더 유연하고 정확한 선박 탐지 모델이 구축될 수 있을 것이다.

Research on Ocular Data Analysis and Eye Tracking in Divers

  • Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.43-51
    • /
    • 2024
  • 본 논문은 수중 활동을 주로 하는 다이버를 대상으로 특수 목적용 다이버 마스크를 이용해서 안구 데이터를 획득 및 분석하고, 이를 이용해서 사용자의 시선을 추적하는 방법에 대해 제안한다. 안구 데이터 분석을 위해 자체 제작한 안구 데이터 셋을 구축하였고, YOLOv8-nano 모델을 활용해서 학습 모델을 생성하였다. 학습 모델의 프레임 당 소요 시간은 평균 45.52ms를 달성하였고, 눈을 뜬 상태와 감는 상태를 구별하는 인식 성공률은 99%를 달성하였다. 안구 데이터 분석 결과를 바탕으로 현실 세계 좌표를 매칭할 수 있는 시선 추적 알고리즘을 개발하였다. 이 알고리즘의 검증 결과 x축은 약 1%, y축은 약 6%의 평균 오차율을 나타내는 것을 알 수 있었다.