• Title/Summary/Keyword: YB-1

Search Result 297, Processing Time 0.023 seconds

Vacancy Ordering and Physical Properties in Defect NaCl-type Solids; M-X (M = Yb, Y, X = S, Se) System

  • Lee Ji-Yun;Kim Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.64-74
    • /
    • 1994
  • The nonstoichiometric chalcogenides with NaCl-type structure were prepared and the physical and structural properties were studied. The homogeneous range and the structural change were studied based on X-ray powder diffractions using Rietveld-type full-profile fitting technique. Wide homogeneous ranges were observed in Y-S and Y-Se systems, and relatively narrow homogeneous ranges were observed in Yb-S and Yb-Se systems. Both in $Yb_{1-x}S\;and\;Yb_{1-x}Se$, a vacancy ordering transition occurred in (111) plane direction. The ordered superstructure had cubic symmetry(Fm$\bar{3}m) with doubled unit cell "a" parameter compared to the original NaCl-type. The superlattice developed in a continuous second-order transitiion was characterized by the reduced waved vector k= $(a^*+b^*+c^*)/2$. Y-S system had metallic, and YSe, YbSe system had semiconducting properties in their homogeneous ranges. It was observed that the change of electronic transport properties in extended homogeneous range did not depend on the relativeratio of metal to nonmetal, but on the quantities of vacancies.

Variation in the Kind of Formed Superconducting Oxide and Microstructure with Heat-Treatment Temperature in Yb-Ba-Cu-Ag Ribbons (Yb-Ba-Cu-Ag 리본의 열처리 온도에 따라 형성된 초전도 산화물의 종류와 미세구조의 변화)

  • 송명엽
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Melt spun YbBa2Cu3Agx(x=0, 5, 12, 16 and 53) precursor alloy ribbons were oxidized at 263-330$^{\circ}C$ and treated at 820$^{\circ}C$, 855$^{\circ}C$ and 885$^{\circ}C$ under 1.0 atm oxygen pressure. In the ribbons treated at 820$^{\circ}C$, 855$^{\circ}C$and 885$^{\circ}C$ 1-2-4 phase (YbBa2Cu4O8) and 1-2-3 phase (YbBa2Cu3O{{{{ OMICRON _7-$\delta$ }})were formed respectively. The shape of 1-2-4 phase was distorted or ellipsoid. The 2-4-7 and 1-2-3 phases tooked the shape of bar. All the ribbons showed zero critical current density Jc at 77K in zero magnetic field. By considering the shape and the highest critical temperature (among the three phases) of the 1-2-3 phase we tried to increase the critical current density of the ribbons treated at 885$^{\circ}C$ by press deformation. About tenribbons were stacked and coupled by press deformation and then treated at 885$^{\circ}C$ These 1-2-3 phase did not show any texture in any of the ribbons. However they exhibited weak texture in the multilayered specimens. Among the multilayered specimens YbBa2Cu3Ag16 exhibited a Jc of 180 A/cm2 Among the above ribbons YbBa2Cu3Ag16 ribbon has the optimum composition to produce textured superconducting oxide with improved Jc by press deformation. Onset critical temperatures Ton of the multilayered YbBa2Cu3Agx(x=5, 12, 16 and 53) were measured as 88-90 K.

  • PDF

생물방제균 Bacillus subtilis YB-70이 생산하는 항진균성 항생물질의 분리 및 구조결정

  • Kim, Yong-Su;Son, Jong-Keun;Moon, Dong-Chul;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • A potential biocontrol bacterium, YB-70 was isolated from a rhizosphere in suppressive soil and identified as a strain of Bacillus subtilis. In several biochemical and in vitro antibiosis tests on Fusarium solani with the culture filterates from B. subtilis YB-70, we found that antifungal mechanism of B. subtilis YB-70 was mediated by antibiotic substances produced from the bacterium. These antifungal substances were appeared to be hear-resistant, micromolecular, and ethy alcohol soluble. Antifungal agents produced by B. subtilis YB-70 showed strong inhibified against root-rotting fungi F. solani in in vivo pot test. An antifungal substance. YBS-1s, was purified from the culture broth of B. subtilis YB-70 by isoelectronic precipitation, silica gel column chromatography and Sephadex LH-20 column chromatography analysis by Fab-MASS, $^{1}$H-NMR, $^{13}$C-NMR, DEPT, and amino acid analyzer revealed that the YBS-1A was a peptide antibiotics of iturin class containing seven amino acids from five different groups, and the other(YBS-1B) was an analogue of iturin group composed of 11 amino acids with larher molecular weight of about 1, 500 dalton, which was lager than that of iturin A.

  • PDF

Superconducting Characteristics of Melt Spun $YBa_2Cu_3Ag_{15}$ and $YbBa_2Cu_3Ag_x$ (x=5, 16 and 53) Microcomposites (융체방사법으로 제작한 $YBa_2Cu_3Ag_{15}$$YbBa_2Cu_3Ag_x$ (x=5, 16 and 53)미세복합재의 초전도 특성)

  • Song, Myeong-Yeop
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.880-887
    • /
    • 1995
  • Melt spun YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{x}$(x=5, 16 and 53) precursor alloy ribbons were oxidized at 263~322$^{\circ}C$, and heat-treated at 872~89$0^{\circ}C$ under 1.0atm oxygen pressure. In addition, about ten ribbons were stacked and coupled by pressing, and then followed the same heat treatment. YB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) or YbB $a_2$C $u_3$ $O_{7-{\delta}}$(1-2-3) phase was formed in both the ribbons and the multilayered specimens. The formed 1-2-3 phases were not texturized in all the ribbons, but slightly texturized in the multilayered specimens. $J_{c}$ was not achieved in all the ribbons at 77K and zero magnetic field. Among the multilayered specimens, YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ showed $J_{c}$ of 260 and 180A/$\textrm{cm}^2$, respectively. YB $a_2$C $u_3$A $g_{15}$ and YbB $a_2$C $u_3$A $g_{16}$ are considered to be the appropriate compositions in producing textured superconducting oxides with improved $J_{c}$ by pressing. Onset critical temperature ( $T_{on}$ ) of the multilayered YB $a_2$C $u_3$A $g_{15}$ was 92K while those of YbB $a_2$C $u_3$A $g_{x}$(x=5 , 16 and 53) were 88~90K. , 16 and 53) were 88~90K.

  • PDF

Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.586-591
    • /
    • 2019
  • This study describes the doping effect of $Yb_2O_3$ on microstructure, electrical and dielectric properties of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ (ZVMN) ceramic semiconductors sintered at a temperature as low as $900^{\circ}C$. As the doping content of $Yb_2O_3$ increases, the ceramic density slightly increases from 5.50 to $5.54g/cm^3$; also, the average ZnO grain size is in the range of $5.3-5.6{\mu}m$. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of $Yb_2O_3$ is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% $Yb_2O_3$ reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of $2.46-7.41{\times}10^{17}cm^{-3}$ with increasing doping content of $Yb_2O_3$ and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of $Yb_2O_3$ reaches 0.1 mol%, whereas further doping increases it. The value of $tan{\delta}$ increases from 0.209 to 0.268 with the doping content of $Yb_2O_3$.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Upconversion Photoluminescence Properties of PbMoO4:Er3+/Yb3+ Phosphors Synthesized by Microwave Sol-Gel Method

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.480-486
    • /
    • 2015
  • $Pb_{1-x}MoO_4:Er^{3+}/Yb^{3+}$ phosphors with various doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) are successfully synthesized using a microwave sol-gel method, and the up-conversion photoluminescence properties are investigated. Well-crystallized particles, which are formed after heat treatment at $900^{\circ}C$ for 16 h, exhibit a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the $Pb_{0.7}MoO_4:Er_{0.1}Yb_{0.2}$ and $Pb_{0.5}MoO_4:Er_{0.05}Yb_{0.45}$ particles exhibit a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicate the presence of strong peaks at higher and lower frequencies induced by the disordered structures of $Pb_{1-x}MoO_4$ through the incorporation of the $Er^{3+}$ and $Yb^{3+}$ ions into the crystal lattice, which results in the unit cell shrinkage accompanying the new phase formation of the $MoO_{4-x}$ group.

Structure of Yb Complex with 3-nitro-1,2,4-triazol-5-one (3-nitro-1,2,4-triazol-5-one의 Yb 착물 구조)

  • 김광주;김재경;오기환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.198-206
    • /
    • 2001
  • The structure of Yb complex with 3-nitro-1,2,4-triazol-5-one(NTO), $[Yb(NTO)3(H2O)4].5H2O$ has been investigated by X-ray diffraction method. Crystallographic data for the title compound : monoclinic, C2/c, $a=36.925(2){\AA},$ b=6.6770(4)${\AA},$ c=25.6376(15)${\AA},$ {\beta}=130.978(1)^{\circ},$ V=4772.0(5)${\AA}^3,$ Z=8, $D_c,=1.952\; Mg/m^3.$ The intensity data were collected on a Broker SMART diffractometer equipped with a CCD area detector using Mo $K\alpha$ radiation. The structure was solved by direct method and refined by full-matrix least-squares calculations to a final R value of 0.0424 for 4727 independent reflections and 335 parameters. The three carbonyls of three NTO anions and four ligand water molecules which are formed the pentagonal bipyramid are coordinated with $Yb^{3+}$ and also five water molecules are included in the form of the crystal water in the molecular structure.

  • PDF

Electrical Characteristics of BaCe$_{0.9}$R$_{0.1}$O$_3$-$\delta$(R=La, Yb, Al) Based Perovskite Phase (BaCe$_{0.9}$R$_{0.1}$O$_3$-$\delta$(R=La, Yb, Al)계 페롭스카이트 상의 전기적 특성)

  • Choi, Soon-Mok;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.69-76
    • /
    • 1999
  • Electrical characteristics of perovskite phases in the BaCe0.9R0.1O3-$\delta$(R=La, Yb and Al) system have been studied. Electrical conductivities of all specimens in air were higher than those in N2 atmosphers between 600 and 100$0^{\circ}C$. When temperature was elevated, the electrical conductivity difference between both atmospheres increased. Electrical conductivity of Yb3+ doped BaCeO3 specimen was higher than those of the La3+ and Al3+ doped specimens. The BaCe0.0Al0.1O3-$\delta$ showed higher proton transference number than both BaCe0.9Yb0.1O3-$\delta$ and BaCe0.9La0.1O3-$\delta$.

  • PDF

Microwave-Modified Sol-Gel Process for Microcystalline KY(WO4)2: Ho3+/Yb3+ Phosphors and their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.514-520
    • /
    • 2015
  • $KY_{1-x}(WO_4)_2:Ho^{3+}/Yb^{3+}$ yellow phosphors with doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ ($x=Ho^{3+}+Yb^{3+}$, $Ho^{3+}=0.05$, 0.1, 0.2 and $Yb^{3+}=0.2$, 0.45) were successfully prepared using the microwave-modified sol-gel method; their upconversion (UC) photoluminescence properties were investigated in detail. Well-crystallized particles, formed after heat-treatment at $900^{\circ}C$ for 16 h, showed a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the UC $KY_{0.7}(WO_4)_2:Ho_{0.1}Yb_{0.2}$ and $KY_{0.5}(WO_4)_2Ho_{0.05}Yb_{0.45}$ particles exhibited excellent yellow emissions based on a strong 545-nm emission band in the green region and a very strong 655-nm emission band in the red region. Pump power dependence and Commission Internationale de L'Eclairage chromaticity of the UC emission intensity were evaluated. The spectroscopic properties were examined comparatively using Raman spectroscopy.