• Title/Summary/Keyword: YAG:$Tb^{3+}$(${Y_{3-x}}{Tb_x}{Al_5}{O_{12}}$)

Search Result 2, Processing Time 0.024 seconds

The Luminescence Properties of YAG:$Tb^{3+}$ Phosphor Prepared by Hydrothermal Synthesis (YAG:$Tb^{3+}$ 형광체 분말의 수열합성과 발광 특성)

  • 김상문;지성훈;구자인;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.745-750
    • /
    • 2000
  • YAG:Tb3+ as green phosphor were studied for the development of low voltage FED phosphor prepared by hydrothermal synthesis. We changed the concentration of luminescence center ion Tb3+ in hydrothermal reaction of which conditions were at 8M NH4OH as mineralizer, at 35$0^{\circ}C$ for 12hrs. As results, we could finally get the YAG:Tb3+ (Y3-xTbxAl5O12) powder of which particle size was about 0.2~1.0${\mu}{\textrm}{m}$. The excitation spectra and the green emitted spectra of YAG:Tb3+ phosphor powder were observed. When we doped 0.25 mol Tb to YAG, we could observe the maximum cathodoluminescence from YAG:Tb3+ phosphor and the chromaticity coordinate of the phosphor was shown x=0.35, y=0.56 in CIE1931 diagram.

  • PDF

Photoluminescence Characteristics of $Y_3Al_5O_{12}$:$Tb^{3+}$ nano-Phosphors by various reagents (반응제에 따른 $Y_3Al_5O_{12}$ : $Tb^{3+}$ 나노형광체의 발광 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Cha, Jae-Hyeok;Choi, Hyun-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.440-441
    • /
    • 2007
  • For this study, terbium-doped yttrium aluminum garnet (YAG:Tb) phosphor powders were prepared via the combustion process using the varous reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope(SEM), and photoluminescence (PL). Single-phase cubic YAG:Tb crystalline powder was obtained at $1000^{\circ}C$ by directly crystallizing it from amorphous materials, as determined by XRD techniques. The SEM image showed that the resulting YAG:Tb powders had uniform sizes and good homogeneity. The photoluminescence spectra of the YAG:Tb nanoparticles were investigated to determinethe energy level of electron transition related to luminescence processes. There were three peaks in the excited spectrum, and the major one was a broad band of around 274 nm. Also, the YAG:Tb nanoparticles showed two emission peaks in the range of 450~500 nm and 525~560 nm, respectively, and had maximum intensity at 545 nm.

  • PDF