• Title/Summary/Keyword: Y-joints

Search Result 4,634, Processing Time 0.031 seconds

Strength of Vertical Joints in Large Concrete Panel Structures (대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰)

  • 이용재;서수연;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

Effect of Reinforcement Type on Ultimate Strength of Tubular X-Joints (X형 관이음부의 보강방법에 따른 극한강도 해석)

  • 조현만;류현선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.230-237
    • /
    • 2000
  • Tubular joints of jacket structures are usually reinforced using thicker can section, internally ring stiffeners, diaphragm, or externally gusset plates to increase load carry capacity. In this paper, the effect of reinforcement type and geometric parameters of stiffener on the ultimate strength of tubular X-joints subjected to brace compression have been studied numerically Three reinforcement methods were considered; (1)can reinforcement (2)internally ring stiffener (3)internally longitudinal diaphragm. The ANSYS software was used nonlinear strength analysis. It was found that there is significant strength enhancement for reinforced joints.

  • PDF

Shear Strength Estimate of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 전단강도 평가)

  • Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.389-392
    • /
    • 2004
  • An accurate and rational analytical proposal for determining the shear strengths of interior beam-column joints is presented in this paper. The proposed equation is derived using a compatiblity aided truss model theory. The accuracy of the proposed equation was checked by comparing calculated shear strength of joints with experimental results reported papers in literature. The comparison showed that the proposed equation predicted the experimental shear strength of joints with reasonable agreement.

  • PDF

An Analytical Study for the Stair Joints Constructed with Prefabricated Form System (선시공 조립식 거푸집 공법을 이용한 계단 접합부의 접합방식에 따른 해석적 연구)

  • Lee, Eun-Jin;Jin, Byung-Chang;Chang, Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-304
    • /
    • 2008
  • The stair joints constructed with prefabricated system are general method doing structure design at hinge. If you regarded joints to come in contact with a flight of stairs and a slope of stairs as hinge, the moment performance of joints is not in the least moment, so as the bending moment of the stair case is increased, the reinforcement increase. Also the use is decreased because increasing the joint damage of the vibration & fatigue load. No less the reason constructed with pin the stair joints because the construction efficiency of field work is useable. Recently, they are considering the construction efficiency, while the semi-rigid detail for bending performance of joints is proposed, but for now they don't reflect the detail. Therefore, we proposed that reflecting the method at design semi-rigid joints. We compared the moment performance with the stair joints designed at the rigid joints, semi-rigid joints and pin joints. The nonlinear behavior of staircase core statically indeterminate structure. The result of research is that a bending stiffness modulus bring to reflect the semi-rigid performance, the performance of the semi-rigid joint is better than pin joints, and that is judged the system better seismic and vibration performance because have excellent ductility more than rigid joint.

  • PDF

Tensile Properties and Creep Rupture Characteristics of Cu-1Cr-0.5Zr/STS316L Friction Welded Joints at Elevated Temperature (Cu-1Cr-0.5Zr 합금과 STS316L강의 마찰용접재의 고온 인장 성질과 크리프 파단 특성)

  • Yoo, I.J.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, the elevated temperature tensile properties and short-time creep rupture characteristics were investigated for the friction welded joints of dissimilar materials, Cu-1%Cr-0.5%Zr and STS316L. The joining tests on Cu-1%Cr-0.5%Zr/STS316L by friction welding were performed, and optimum joining conditions of the friction welded joints were determined. The characteristics of the elevated temperature tensile strength, hardness, fractographs were examined, and the creep rupture characteristics for the optimum welded joints were investigated under uniaxal static load at 300, 400 and $500^{\circ}C$.

  • PDF

Influence of exterior joint effect on the inter-story pounding interaction of structures

  • Favvata, Maria J.;Karayannis, Chris G.;Liolios, Asterios A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.113-136
    • /
    • 2009
  • The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

Vibration Control of Structures Using Viscoelastic Dampers Installed in Expansion Joints (신축이음부에 설치된 점탄성감쇠를 이용한 구조물의 진동제어)

  • Kim, Jin-Koo;Ryou, Jin-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.33-42
    • /
    • 2004
  • The usual practice of placing viscoelastic dampers (VED) in the inter-story of building structures frequently interfere with spatial planning and obstruct internal view. These shortcomings can be overcome by installing VED in seismic joints or in expansion joints which are usually hidden under a cover. This study investigates the effect of installing VED in seismic joints to reduce earthquake-induced dynamic reponses. Parametric studies were conducted using 3-DOF systems connected by VED and subjected to earthquake excitations to investigate the effectiveness of the proposed scheme. Nonlinear dynamic analyses were carried out with five-story structures composed of different structure systems and connected by seismic joints. According to the analysis results the use of VED in seismic joints turned out to be effective as long as the natural frequencies of the connected structures are different enough.

DIAGNOSTIC RELIABILITY OF THE DYNAMIC MRI FOR THE INTERNAL DERANGEMENT OF TEMPORO-MANDIBULAR JOINTS (악관절내장증의 진단에 있어 Dynamic MRI의 효용)

  • Park, Chang-Hwan;Kim, Myung-Rae;Kim, Sun-Jong;Cheong, Eun-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.273-280
    • /
    • 1994
  • The Magnetic Resonance Imaging has been used widely to evaluate the disk position without any interruption of the TMJ structures, and the Dynamic MRI presenting computed serial imaging or the video-recorded simulation images is thought to be very effective to evaluate the disk position under function. This is to study the correlation between the clinical diagnosis and the findings of Dynamic MRI for the diagnosis of internal derangement of the temporomandibular joints. 30 joints(15 patients) were examined clinically, and the movement of TMJ meniscus was reviewed in the dynamic MRI. The comparative results are as follows : 1. All internal derangements of TMJ disk displacement without reduction were consistent with MRI findings. 2. 5 joints (50%) of disk displacements with reduction could not be confirmed by MRI findings. 3. The disk displacements in MRI were found in 55% of painful joints, 50% of clicking joints, and 70% of the joints with restricted movement. 4. The reliability of MRI for the diagnosis of TMD was evaluated as 77% ; 24 of 30 joints who presented with clinical diagnosis of TMD. 5. MRI is very reliable to diagnose the disk displacement without reduction, but it is rather not so effective to diagnose the early derangement or muscle disorders.

  • PDF

Kinematical Analysis of Tippelt Motion in Parallel Bars (평행봉 Tippelt 동작의 기술 분석)

  • Back, Hun-Sik;Kim, Min-Soo;Moon, Byoung-Yong;Back, Jin-Ho;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.