• Title/Summary/Keyword: Y-graph spectrum

Search Result 39, Processing Time 0.018 seconds

ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR GRAPHS OF THE RING ℤn

  • Pirzada, S.;Rather, Bilal A.;Shaban, Rezwan Ul;Merajuddin, Merajuddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • For a finite commutative ring R with identity 1 ≠ 0, the zero divisor graph ��(R) is a simple connected graph having vertex set as the set of nonzero zero divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find the signless Laplacian spectrum of the zero divisor graphs ��(ℤn) for various values of n. Also, we find signless Laplacian spectrum of ��(ℤn) for n = pz, z ≥ 2, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor graph ��(ℤn) are signless Laplacian integral.

LAPLACIAN SPECTRA OF GRAPH BUNDLES

  • Kim, Ju-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1159-1174
    • /
    • 1996
  • The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. in this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltage lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

  • PDF

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.

Cospectral and hyper-energetic self complementary comparability graphs

  • Merajuddin, Merajuddin;Kirmani, S.A.K.;Ali, Parvez;Pirzada, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.65-75
    • /
    • 2007
  • A graph G is self-complementary (sc) if it is isomorphic to its complement. G is perfect if for all induced subgraphs H of G, the chromatic number of H (denoted ${\chi}$(H)) equals the number of vertices in the largest clique in H (denoted ${\omega}$(H)). An sc graph which is also perfect is known as sc perfect graph. A comparability graph is an undirected graph if it can be oriented into transitive directed graph. An sc comparability (scc) is clearly a subclass of sc perfect graph. In this paper we show that no two non-isomorphic scc graphs with n vertices each, (n<13) have same spectrum, and that the smallest positive integer for which there exists hyper-energetic scc graph is 13.

  • PDF

DIRECTED STRONGLY REGULAR GRAPHS AND THEIR CODES

  • Alahmadi, Adel;Alkenani, Ahmad;Kim, Jon-Lark;Shi, Minjia;Sole, Patrick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • The rank over a finite field of the adjacency matrix of a directed strongly regular graph is studied, with some applications to the construction of linear codes. Three techniques are used: code orthogonality, adjacency matrix determinant, and adjacency matrix spectrum.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

ON THE NUMBER OF SEMISTAR OPERATIONS OF SOME CLASSES OF PRUFER DOMAINS

  • Mimouni, Abdeslam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1485-1495
    • /
    • 2019
  • The purpose of this paper is to compute the number of semistar operations of certain classes of finite dimensional $Pr{\ddot{u}}fer$ domains. We prove that ${\mid}SStar(R){\mid}={\mid}Star(R){\mid}+{\mid}Spec(R){\mid}+ {\mid}Idem(R){\mid}$ where Idem(R) is the set of all nonzero idempotent prime ideals of R if and only if R is a $Pr{\ddot{u}}fer$ domain with Y -graph spectrum, that is, R is a $Pr{\ddot{u}}fer$ domain with exactly two maximal ideals M and N and $Spec(R)=\{(0){\varsubsetneq}P_1{\varsubsetneq}{\cdots}{\varsubsetneq}P_{n-1}{\varsubsetneq}M,N{\mid}P_{n-1}{\varsubsetneq}N\}$. We also characterize non-local $Pr{\ddot{u}}fer$ domains R such that ${\mid}SStar(R){\mid}=7$, respectively ${\mid}SStar(R){\mid}=14$.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

A Novel Prediction-based Spectrum Allocation Mechanism for Mobile Cognitive Radio Networks

  • Wang, Yao;Zhang, Zhongzhao;Yu, Qiyue;Chen, Jiamei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2101-2119
    • /
    • 2013
  • The spectrum allocation is an attractive issue for mobile cognitive radio (CR) network. However, the time-varying characteristic of the spectrum allocation is not fully investigated. Thus, this paper originally deduces the probabilities of spectrum availability and interference constrain in theory under the mobile environment. Then, we propose a prediction mechanism of the time-varying available spectrum lists and the dynamic interference topologies. By considering the node mobility and primary users' (PUs') activity, the mechanism is capable of overcoming the static shortcomings of traditional model. Based on the mechanism, two prediction-based spectrum allocation algorithms, prediction greedy algorithm (PGA) and prediction fairness algorithm (PFA), are presented to enhance the spectrum utilization and improve the fairness. Moreover, new utility functions are redefined to measure the effectiveness of different schemes in the mobile CR network. Simulation results show that PGA gets more average effective spectrums than the traditional schemes, when the mean idle time of PUs is high. And PFA could achieve good system fairness performance, especially when the speeds of cognitive nodes are high.