• Title/Summary/Keyword: Y-eccentrically braced frame

Search Result 16, Processing Time 0.023 seconds

Progressive collapse analysis of buildings with concentric and eccentric braced frames

  • Larijan, Reza Jalali;Nasserabadi, Heydar Dashti;Aghayan, Iman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.755-763
    • /
    • 2017
  • In this study, the susceptibility of different symmetric steel buildings with dual frame system to Progressive Collapse (PC) was assessed. Some ten-story dual frame systems with different type of braced frames (concentrically and eccentrically braced frames) were considered. In addition, numbers and locations of braced bays were investigated (two and three braced bays in exterior frames) to quantitatively find out its effect on PC resistance. An Alternate Path Method (APM) with a linear static analysis was carried out based on General Services Administration (GSA 2003) guidelines. Maximum Demand Capacity Ratio (DCR) for the elements (beams and columns) with highest DCRs ($DCR_{moment}$ and $DCR_{shear}$) is given in tables. The results showed that the three braced bays with concentric braced frames especially X-braced and inverted V-braced frame systems had a lower susceptibility and greater resistance to PC. Also, the results represented that the beams were more critical than columns against PC after the removal of column.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

Effects of near-fault records characteristics on seismic performance of eccentrically braced frames

  • Eskandari, Reyhaneh;Vafaei, Davoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.855-870
    • /
    • 2015
  • In this paper the effects of fling-step and forward-directivity on the seismic performance of steel eccentrically braced frames (EBFs) are addressed. Four EBFs with various numbers of stories (4-, 8-, 12- and 15-story) were designed for an area with high seismic hazard. Fourteen near-fault ground motions including seven with forward-directivity and seven with fling-step effects are selected to carry out nonlinear time history (NTH) analyses of the frames. Furthermore, seven more far-field records were selected for comparison. Findings from the study reveal that the median maximum links rotation of the frames subjected to three set of ground motions are in acceptable range and the links completely satisfy the requirement stated in FEMA 356 for LS performance level. The arrival of the velocity pulse in a near-fault record causes few significant plastic deformations, while many reversed inelastic cycles result in low-cycle fatigue damage in far-fault records. Near-fault records in some cases are more destructive and the results of these records are so dispersed, especially the records having fling-step effects.

Effect of link length in retrofitted RC frames with Y eccentrically braced frame

  • INCE, Gulhan
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.553-564
    • /
    • 2022
  • Many existing reinforced concrete (RC) structures need to be strengthening for reason such as poor construction quality, low ductility or designing without considering seismic effects. One of the strengthening methods is strengthening technique with eccentrically braced frames (EBFs). The characteristic element of these systems is the link element and its length is very important in terms of seismic behavior. The link element of Y shaped EBF systems (YEBFs) is designed as a short shear element. Different limits are suggested in the literature for the link length. This study to aim experimentally investigate the effect of the link length for the suggested limits on the behavior of the RC frame system and efficiency of strengthening technique. For this purpose, a total of 5 single story, single span RC frame specimens were produced. The design of the RC frames was made considering seismic design deficiencies. Four of the produced specimens were strengthened and one of them remained as bare specimen. The steel YEBFs were used in strengthening the RC frame and the link was designed as a shear element that have different length with respect to suggested limits in literature. The length of links was determined as 50mm, 100mm, 150mm and 200mm. All of the specimens were tested under cyclic loads. The obtained results show that the strengthening technique improved the energy consumption and lateral load bearing capacities of the bare RC specimen. Moreover, it is concluded that the specimens YB-2 and YB-3 showed better performance than the other specimens, especially in energy consumption and ductility.

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

An analytical model for shear links in eccentrically braced frames

  • Ashtari, Amir;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.627-645
    • /
    • 2016
  • When an eccentrically braced frame (EBF) is subjected to severe earthquakes, the links experience inelastic deformations while beams outside of the link, braces and columns are designed to remain elastic. To perform reliable inelastic analyses of EBFs sufficient analytical model which can accurately predict the inelastic performance of the links is needed. It is said in the literature that available analytical models for shear links generally predict very well the maximum shear forces and deformations from experiments on shear links, but may underestimate the intermediary values. In this study it is shown that available analytical models do not predict very well the maximum shear forces and deformations too. In this study an analytical model which can accurately predict both maximum and intermediary values of shear force and deformation is proposed. The model parameters are established based on test results from several experiments on shear links. Comparison of available test results with the hysteresis curves obtained using the proposed analytical model established the accuracy of the model. The proposed model is recommended to be used to perform inelastic analyses of EBFs.

Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames

  • Zahrai, Seyed Mehdi;Jalali, Meysam
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.1-21
    • /
    • 2014
  • Knee Braced Frame (KBF) is a special form of ductile eccentrically braced frame having a diagonal brace connected to a knee element, as a hysteretic damper, instead of beam-column joint. This paper first presents an experimental investigation on cyclic performance of two knee braced single span one-story frame specimens. The general test arrangement, specimen details, and most relevant results (failure modes and hysteretic curves) are explained. Some indexes to assess the seismic performance of KBFs, including ductility; response reduction factor and energy dissipation capabilities are also subsequently discussed. Experimental results indicate that the maximum equivalent damping ratios achieved by test frames are 21.8 and 23% for the specimens, prior to failure. Finally, a simplified analytical model is derived to predict the bilinear behavior of the KBFs. Acceptable conformity between analytical and experimental results proves the accuracy of the proposed model.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.