• Title/Summary/Keyword: Y-TZP zirconia

Search Result 134, Processing Time 0.026 seconds

Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia (3Y-TZP의 기계적 물성에 미치는 영향: (I) 단사정지르코니아의 첨가)

  • Yang, Seong-Koo;Bae, Kyung-Man;Cho, Bum-Rae;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.411-416
    • /
    • 2005
  • Y-TZP(Yttria-stabilized Tetragonal Zirconia Polycrystal) ceramics are of great interest as engineering and structural materials due to their excellent mechanical properties arising from transformation toughening, it is also reported that the 3Y-TZP($3 mol\%$ Yttria-stabilized Tetragonal Zirconia Polycrystal) has the best mechanical properties in Y-TZP ceramics. But to use widely for engineering and structural materials, it remains an important challenge to be able to improve its fracture toughness. In order to produce the 3Y- TZP ceramics showing much better mechanical properties, milling method adding monoclinic zirconia to 3Y-TZP was adopted and the resultant mechanical properties containing apparent density and fracture toughness were measured by using proper techniques. Experimental results showed that the 3Y-TZP specimen containing $33 wt\%$ of monoclinic zirconia, which was sintered at $1450^{\circ}C$, has the highest fracture toughness value of $11.38 MPa{\cdot}m^{1/2}$ which is three times higher than that of normal 3Y-TZP ceramics.

Effect of connector configuration on the fracture load in conventional and translucent zirconia three-unit fixed dental prostheses

  • Chonticha Subsomboon;Somchai Urapepon
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2023
  • PURPOSE. The purpose of this study was to determine the effect of the connector configuration on the fracture load in conventional and translucent zirconia of three-unit fixed dental prostheses (FDPs). MATERIALS AND METHODS. Six different three-unit FDPs were prepared (n = 6) from three types of zirconia (3Y-TZP (Katana ML®), 4Y-TZP (Katana STML®), and 5Y-TZP (Katana UTML®)) in combination with two connector configurations (4 × 2.25, 3 × 3 mm). The CoCr master models were scanned, and the FDPs were designed and fabricated using CAD-CAM. The FDPs were cemented on the metal model and then loaded with a UTM at a crosshead speed of 1 mm/min until failure. Two-way ANOVA and Tukey's test were used for statistical analysis (α = .05). RESULTS. Fracture loads of 3Y-TZP (2740.6 ± 469.2 and 2718.7 ± 339.0 N for size 4 × 2.25 mm and 3 × 3 mm, respectively) were significantly higher than those of 4Y-TZP (1868.3 ± 281.6 and 1663.6 ± 372.7 N, respectively) and 5Y-TZP (1588.0 ± 255.0 and 1559.1 ± 110.0 N, respectively) (P < .05). No significant difference was found between fracture loads of 4Y-TZP and 5Y-TZP (P > .05). The connector configuration within 9 mm2 was found to have no effect on the fracture loads on all three types of zirconia (P > .05). CONCLUSION. Fracture loads of three-unit FDPs were affected by the type of zirconia. The fracture loads of conventional zirconia were higher than those of translucent zirconia. However, it was not affected by the connector configuration when the connector had a cross-sectional area of 9 mm2.

A Study on SEM Observations of Low Temperature Degradation in Zirconia Dental Ceramics (저온열화에 따른 치과용 지르코니아의 전자현미경 관찰 연구)

  • Lee, Jung-Hwan;Joo, Kyu-Ji;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • Purpose: Thy yttria tetragonal zirconia polycrystalline(Y-TZP) is a good structural ceramic for dental restoration. But it have a problem that delamination of veneering ceramic from the Y-TZP core materials. The problem generally occur at the interface, thus this study was conducted to evaluate the interface of Y-TZP using scanning electron microscopy(SEM). Methods: To investigate this aspect, high-resolution SEM observations were made of polished and etched (HF content gel) cross-sections of the interface area. Dry and moist veneering porcelain powders were built up on the zirconia base. Results: The extent of this surface faceting is dependent upon the moisture content of the porcelain powder and the firing temperature. More moisture and higher final heating temperature accelerates the observed faceting of the Y-TZP grains at the interface to the veneering ceramic. Conclusion: These changes of the Y-TZP grains indicate that destabilization of the tetragonal phase of zirconia occurs at the interface during veneering with ceramic. It may result in a reduction of the stability of the zirconia and interface.

Properties of Dental CAD/CAM Zirconia (CAD/CAM 지르코니아 재료의 특성)

  • Bae, Tae-Sung
    • The Journal of the Korean dental association
    • /
    • v.49 no.5
    • /
    • pp.260-264
    • /
    • 2011
  • Zirconia ($ZrO_2$) is a crystalline dioxide of zirconium. Dental zirconia blocks for CAD/CAM are usually fabricated with powders of tetragonal zirconia polycrystals (TZP) stabilized with 3mol% yttria. Because of its mechanical properties similar to those of metals and color similar to tooth, it is evaluated to attain the two purposes at a time, strength and aesthetic in prosthetic dentistry. The ability of transformation of Y-TZP from tetragonal to monoclinic helps to prevent crack propagation and contributes the increase of strength and fracture toughness. Two different types of blocks, soft and hard, are used to prepare the zirconia frameworks. The fuzzy-sintered block is difficult in machining, so pre-sintered soft 3Y-TZP block is usually used to mill by computer aided machining.

Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel

  • Alfrisany, Najm Mohsen;Shokati, Babak;Tam, Laura Eva;De Souza, Grace Mendonca
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • PURPOSE. The aim of this study was to evaluate the effect of occlusal adjustments on the surface roughness of yttria-tetragonal zirconia polycrystal (Y-TZP) and wear of opposing artificial enamel. MATERIALS AND METHODS. Twenty-five Y-TZP slabs from each brand (Lava, 3M and Bruxzir, Glidewell Laboratories) with different surface conditions (Control polished - CPZ; Polished/ground - GRZ; Polished/ground/repolished - RPZ; Glazed - GZ; Porcelain-veneered - PVZ; n=5) were abraded (500,000 cycles, 80 N) against artificial enamel (6 mm diameter steatite). Y-TZP roughness (in ${\mu}m$) before and after chewing simulation (CS) and antagonist steatite volume loss (in $mm^3$) were evaluated using a contact surface profilometer. Y-TZP roughness was analyzed by three-way analysis of variance (ANOVA) and steatite wear by two-way ANOVA and Tukey Honest Difference (HSD) (P=.05). RESULTS. There was no effect of Y-TZP brand on surface roughness (P=.216) and steatite loss (P=.064). A significant interaction effect (P<.001) between surface condition and CS on Y-TZP roughness was observed. GZ specimens showed higher roughness after CS (before CS - $3.7{\pm}1.8{\mu}m$; after CS - $13.54{\pm}3.11{\mu}m$), with partial removal of the glaze layer. Indenters abraded against CPZ ($0.09{\pm}0.03mm^3$) were worn more than those abraded against PVZ ($0.02{\pm}0.01mm^3$) and GZ ($0.02{\pm}0.01mm^3$). Higher wear caused by direct abrasion against zirconia was confirmed by SEM. CONCLUSION. Polishing with an intraoral polishing system did not reduce the roughness of zirconia. Wear of the opposing artificial enamel was affected by the material on the surface rather than the finishing technique applied, indicating that polished zirconia is more deleterious to artificial enamel than are glazed and porcelain-veneered restorations.

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF

Sintering and Isothermal Phase Transformation of Calcia Stabilized Tetragonal Zirconia Polycrystals (칼시아 안정화 정방정 지르코니아(Ca-TZP)의 소결 및 등온상전이 거동)

  • 곽효섭;백용혁;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Calcia stabilized zirconia polycrystal (Ca-TZP) powders synthesized by hydrothermal treatment was sintered at a temperature range of $1200^{\circ}C~1400^{\circ}C$ and investigated the properties of sintered body and the behaviors of isothermal phase transformation. The sintered bodies of Ca-TZP were shown the density of about 97% and the average mean tetragonal grain size of about $0.1~0.25{\mu}m$. Also, Ca-TZP specimen was more stable during aging at $250^{\circ}C$ than that of Y-TZP ceramics.

  • PDF

Flexure Strength of Glass-infiltrated Zirconia Complex (유리침투 지르코니아 복합체의 굴곡 강도)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • In this study, to improve the flexure strength of Zirconia, on the Zirconia pellet surface measure the flexure strength to melt or permeate the Alumina (Vita Zahnfabrik, Bad Sachkingen, Germany) of private used In-Cream and observe by Scanning election microscope. In the control group(3Y-TZP group), the average of flexure strength was 1623.7MPa, and in the experimental group(Glass-infiltrated 3Y-TZP group) was 1800.2MPa. As a result of observing the interface between glass and zirconia with a scanning election microscope, it was showed that the glass dissolves to permeate into the surface of zirconia, so filled the zirconia with particles.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(I) : Effect of CeO2 Content on the Mechanical Properties and Fracture Behavior of Ce-TZP (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(I) : CeO2 함량에 따른 Ce-TZP의 기계적 성질과 파괴거동의 변화)

  • 김문일;박정현;강대석;문성환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.719-727
    • /
    • 1989
  • By using commercial zirconia powder CeO2-ZrO2 ceramics containing 8~16mol% CeO2 was made by heat treatment at 1350~155$0^{\circ}C$ for 1~10hr. The minimum amount of CeO2 for obtaining complete tetragonal phase was 12mol%, and in the tetragonal phase region fracture toughness of Ce-TZP was decreased with increasing CeO2 content and the maximum value was obtained when 12mol% CeO2 was added. The bending strength goes through maximum at 14mol% CeO2. Fracture mode of Ce-TZP transformed from intergranular to transgranular fracture with increasing CeO2 content, so the morphology of fracture surface of 16mol% Ce-TZP was wholly transgranular and this tendency was independent on grain size. The crystal structure of the 12mol% Ce-TZP was monoclinic with fringes along the grain boundaries which are lying in the particular plane from the TEM observation. The chemical composition of the sintered body was homogeneous as a whole and some amorphism or air pocket was observed at the triple junction.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(II) : Mechanical Properties of Ce-TZP and its Fracture Behavior at Elevated Temperature (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(II) : Ce-TZP의 고온 기계적 성질과 파괴거동의 변화)

  • 강대석;김문일;박정현;문성환;백승수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.789-794
    • /
    • 1989
  • The high-temperature strength of Ce-TZP was measured at 200, 650 and 100$0^{\circ}C$ by 4-point bending test. And its fracture behavior was observed by SEM. Below $650^{\circ}C$ of the temperature, where monoclinic fraction was almost zero, the decreasing rate of bending strength was relatively slow, but above this temperature, high temperature strength was largely decreased as a result of the decrease of stress-induced transformation of zirconia. The observation of fracture surface bended at 100$0^{\circ}C$ indicated that the fracture mode changed from intergranular-into transgranular-form with regardless of ceria contents.

  • PDF