• Title/Summary/Keyword: Y Type Balancing Transformer

Search Result 8, Processing Time 0.021 seconds

The AC Chopper LED Driving System Using The Y Type Balancing Transformer (Y형 밸런싱 트랜스포머를 적용한 AC초퍼 LED 구동 시스템)

  • Kim, Jin-Gu;Yoo, Jin-Wan;Kim, Yong-Ha;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • The AC-LED driving system which is connected directly to alternative current source is suitable for commercialization because of it's simple structure and low cost. However, it requires additional circuits compensating for current differences between the parallel connected LED strings. In this paper, we proposed the circuit compensating for current error of the three LED strings using the Y type balancing transformer. The proposed Half-bridge AC Chopper LED driving system used the ferrite material's balancing transformer. at the same time, it is able to dimming control. The proposed system is applied to 80W AC-LED module consist of three parallel strings. Experiment results present that Power factor and THD measured with power analyzer are 0.958 and 26.473% respectively satisfied with IEC61000-3-2 harmonics standard.

High Efficiency LED Driving System using Y type Current Balancing Transformer (Y형 전류평형 트랜스포머를 이용한 고효율 LED 구동시스템)

  • Kim, Jin-Gu;Yoo, Jin-Wan;Park, Chong-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.223-231
    • /
    • 2015
  • LEDs have been widely used in lighting displays, automobiles, and airplanes owing to their excellent light output characteristics and long lifespan. Though LEDs are manufactured under the same process, variations in impurity concentrations cause electrical deviation among LEDs. The resulting electrical deviation can not only reduce the life time of the LED but also cause non-uniform luminance of LEDs connected in parallel. LED driving circuit is required to solve these problems. In this paper, we propose a LED driving system using Y-type current balancing transformer to maximize the efficiency of the system by removing output stage Schottky diodes. Experimental results are presented to verify the performance of proposed LED driving system that is applied to 80 W LED modules.

New Battery Balancing Circuit using Magnetic Flux Sharing

  • Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.194-201
    • /
    • 2014
  • To increase the capacity of secondary cells, an appropriate serial composition of the battery modules is essential. The unbalance that may occur due to the series connection in such a serial composition is the main cause for declines in the efficiency and performance of batteries. Various studies have been conducted on the use of a passive or active topology to eliminate the unbalance from the series circuit of battery modules. Most topologies consist of a complex structure in which the Battery Management System (BMS) detects the voltage of each module and establishes the voltage balancing in the independent electrical power converters installed on each module by comparing the module voltage. This study proposes a new magnetic flux sharing type DC/DC converter topology in order to remove voltage unbalances from batteries. The proposed topology is characterized by a design in which all of the DC/DC convertor outputs connected to the modules converge into a single transformer. In this structure, by taking a form in which all of the battery balancing type converters share magnetic flux through a single harmonic wave transformer, all of the converter voltages automatically converge to the same voltage. This paper attempts to analyze the dynamic properties of the proposed circuit by using a Programmable Synthesizer Interface Module (PSIM), which is useful for power electronics analysis, while also attempting to demonstrate the validity of the proposed circuit through experimental results.

A Study On The Load Sharing PWM Method For Multi-level Converter (멀티레벨 PWM 컨버터의 부하분담 PWM 방식 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.529-534
    • /
    • 2017
  • In this paper, the implementation of proposed Automatic Load Balanced (ALB) PWM generation method is discussed. The conventional PWM generation method for cascade type H-bridge PWM converter causes the unbalance between each H-bridge converter, therefore the complex redundancy is required for the balancing of switching load of each converter, it consumes more computing power of controller. The ALB PWM method needs no additional switching redundancy for balancing, this paper discusses the implementation of ALB-PWM.

Operating Method of 3 Phase Voltage type PWM Converter for Unbalanced Voltage with Leakage Transformer (누설변압기가 부착된 전원 불평형 3상 전압형 PWM 컨버터 운전법)

  • Chun, Ji-Yong;Kim, Young-Chun;Cho, Yu-Hwan;Lee, Keun-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

  • PDF

A Compensation Method considering Unbalance of Reactor at Source Side in Driving 3 Phase Voltage type PWM Converter (3상 전압형 PWM 컨버터 운전시 전원측 리액터의 불평형을 고려한 보상법)

  • Chun, Ji-Yong;Lee Sa-Young;Cho Yu-Hwan;Lee Geun-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.373-379
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

Structure and Control of Smart Transformer with Single-Phase Three-Level H-Bridge Cascade Converter for Railway Traction System (Three-Level H-Bridge 컨버터를 이용한 철도차량용 지능형 변압기의 구조 및 제어)

  • Kim, Sungmin;Lee, Seung-Hwan;Kim, Myung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.617-628
    • /
    • 2016
  • This paper proposes the structure of a smart transformer to improve the performance of the 60Hz main power transformer for rolling stock. The proposed smart transformer is a kind of solid state transformer that consists of semiconductor switching devices and high frequency transformers. This smart transformer would have smaller size than the conventional 60Hz main transformer for rolling stock, making it possible to operate AC electrified track efficiently by power factor control. The proposed structure employs a cascade H-Bridge converter to interface with the high voltage AC single phase grid as the rectifier part. Each H-Bridge converter in the rectifier part is connected by a Dual-Active-Bridge (DAB) converter to generate an isolated low voltage DC output source of the system. Because the AC voltage in the train system is a kind of medium voltage, the number of the modules would be several tens. To control the entire smart transformer, the inner DC voltage of the modules, the AC input current, and the output DC voltage must be controlled instantaneously. In this paper, a control algorithm to operate the proposed structure is suggested and confirmed through computer simulation.

The Implementation of Current Compensation Controller in Driving Voltage type Converter considering the Unbalance of Reactor at the Source Side (전원측 리액터 불평형을 고려한 전압형 컨버터의 전류 보상 제어기 구현)

  • Chun Ji-Yong;Cho Yu-Hwan;Lee Geun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.413-420
    • /
    • 2004
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining method of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. In order to solve the problem which the unbalanced system control is used to leakage transformer not equaled reactance by each phase in rectifier system. The proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

  • PDF