• Title/Summary/Keyword: Y$_2$O$_3$

Search Result 33,220, Processing Time 0.054 seconds

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Phase Relationships of Al2O3-Cr2O3-ZrO2-HfO2 System (Al2O3-Cr2O3-ZrO2-HfO2계의 상 (phase)관계에 관한 연구)

  • 장동석;조병곤;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • The investigation includes phase equilibria of Al2O3-HfO2 Cr2O3-ZrO2, Cr2O3-HfO2, Al2O3-Cr2O3-ZrO2, Al2O3-Cr2O3-HfO2, Al2O3-ZrO2-HfO2, Cr2O3-ZrO2-HfO2, Al2O3-Cr2O3-ZrO2-HfO2. In the systems the solubility near the end members has been studied at 1500$^{\circ}C$ and 1600$^{\circ}C$, respectively. Selective Compositions were investigated in the area of the guarternary system where the phae relation was examined.

  • PDF

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Structural Characterization of the Eight-Coordinated Dodecahedral Y(tpb)3(H2O)2 (8배위 12면체 Y(tpb)3(H2O)2착물의 합성과 구조)

  • Yu, Chong-Nam;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.240-243
    • /
    • 2007
  • The eight coordinated yttrium(III) complex Y(tpb)3(H2O)2 (Htpb=4,4,4-Trifluoro-1-phenyl-1,3-butanedione) has been synthesized and structurally characterized by X-ray diffraction method. The coordination polyhedron of Y(tpb)3(H2O)2 has a dodecahedron. The angle between two trapezia, Y-O2-O1-O5-O6 and Y-O4-O3-O8-O7, is 89.59°. The O1-O5 and O3-O8 distances are 2.965 and 2.995 A whereas the O2-O6 and O4-O7 distances are 4.256 and 4.403 A.

Effect of Y2O3 and La2O3 on the Sintering Behavior of Alumina (Y2O3 및 La2O3 첨가가 알루미나의 소결거동에 미치는 영향)

  • Lee, Keun Bong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this study, to increase the strength and enhance the sintering property of $Al_2O_3$, $Y_2O_3$ and $La_2O_3$ were added; the effects of these additions on the sintering characteristics of $Al_2O_3$ were observed. Adding 1% of $Y_2O_3$ to $Al_2O_3$ repressed the development of abnormal particles and reduced the grain boundary migration of $Al_2O_3$, curbing pores to capture particles; as such, the material showed a fine microstructure. But, when over 2% of $Y_2O_3$ was added, the sintering property was reduced because of abnormal particle grain growth and pore formation in particles. Adding 1% of $Y_2O_3$ and $La_2O_3$ to $Al_2O_3$ led to the development of abnormal particles and formed pores in the particles; when over 3% of $La_2O_3$ was added, the sintering property was reduced because the shape of the $Al_2O_3$ particles changed to angled plates.

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Advanced Oxidation Process for the Treatment of Terephthalic Acid Wastewater using UV, H2O2 and O3 : Organic and Color Removal Studies (UV, H2O2, 오존을 이용한 고급산화공정에서의 테레프탈산 제조공정 폐수 처리 : 유기물 및 색도제거 연구)

  • Kwon, Tae-Ouk;Park, Bo-Bae;Moon, Il-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.648-655
    • /
    • 2007
  • UV/H_2O_2$, $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ processes were tested for the removal of COD and color from terephthalic acid wastewater. COD removal efficiencies were 10, 48, 56, 63% in the $UV/H_2O_2$, $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ process respectively. Color removal efficiency of $UV/H_2O_2$ process was 80% and $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ processes were almost more than 99%. Terephthalic acid, isophthalic acid and benzoic acid were completely destructed in terephthalic wastewater within 120 min by $UV/H_2O_2/O_3$ process and shows high COD and color removal efficiencies. The optimum concentration of $H_2O_2$ dosage was found to be 0.5 M, 25 mM and 5 mM for $UV/H_2O_2$, $O_3/H_2O_2$ and $UV/H_2O_2/O_3$ processes respectively, Organic destruction efficiency was enhanced and also reducing the consumption of $H_2O_2$ dosage by combining UV, $H_2O_2$ and $O_3$ process.

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF