• 제목/요약/키워드: Xenon Mitigation

검색결과 1건 처리시간 0.018초

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.