• Title/Summary/Keyword: Xe

Search Result 532, Processing Time 0.023 seconds

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria (이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절)

  • Lee , Hyang-Jin;Cleemann , Lars;Morad , Martin;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.352-357
    • /
    • 2004
  • Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF

Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method (글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.

Development and Experiments of the Low Power Hall Thruster for STSAT-3 (과학기술위성 3호 탑재를 위한 저전력 홀 추력기 개발 및 시험)

  • Lee, Jong-Sub;Seo, Mi-Hui;Seon, Jong-Ho;Choe, Won-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.298-302
    • /
    • 2009
  • Low power Hall thruster is under development as one of the core technologies for STSAT-3. The Hall thruster has several advantages such as its simple structure, high thrust density and specific impulse etc. Development target values deduced by analyzing requirements are consumed electrical power, thrust, thrust efficiency, and specific impulse of < 300 W, > 10 mN, ~ 35%, and > 1000 s, respectively. In order to achieve the target specifications, two prototype Hall thrusters were developed and compared. To date, thrust and efficiency are 11 mN and 37% under the total power of 290 W with 0.97 mg/s Xe propellent supply.

  • PDF

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

Photodegradation of Halogen Derivatives of Aliphatic Hydrocarbon in Aqueous Photocatalytic Suspensions (지방족 탄화수소의 할로겐 유도체 수용액의 광촉매-광분해)

  • Jun, Jin;Jung, Hak-Jin;Kim, Hae-Jin;Kim, Sam-Hyeok
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • The rates of photodegradation, reactivities, and mechanisms of photooxidation for the aqueous solution containing with halogen derivatives of aliphatic hydrocarbons have been discussed with respect to the kinds of photocatalysts, concentration of photocatalytlc suspensions, strength of radiant power, time of illumination, changes of pH of substrate solution, wavelength of radiation, and pressure of oxygen gas saturated In the solution. These aqueous solutions suspended with 0.5 $gL^{-1}$ $TiO_2$ powder have been photodecomposed in the range of 100 and 93.8% per 1 hour if it is illuminated with wavelength (λ $\geq$ 300nm) produced from Xe-lamp(450W). The photocatalytic abilities have been increased In the order of $Fe_2O_3$ < CdS < $CeO_2$ < Y_2O_3$ <$TiO_2$, and rates of photodegradation for the solution have maldmum values in the condition of pH 6 ~ 8 and 3 psi-$O_2$ gL^{-1}$. These rates for the Photoolddation Per 1 hour were dependent on the size of molecular weight and chemical bonding for organic halogen compounds and the rates of photodegadation were increased in the order of $C_2H_5Br$ < CH_2Br_2$ < C_5H_11Cl C_2H_4Cl_2$ < tracts-$C_2H_2Cl_2$ < cis-C_2H_2Cl_2$ The T_{1/2}$ and t99% for these solutions were 5~21 and 40~90 minutes. respectively, and these values were coincided with Initial reaction kinetics(ro). It was found that reaction of photodegradation has the pseudo first-order kinetics controlled by the amount of $h^+_{VB}$ diffused from a surface of photocatalysts.

  • PDF

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Study on Relation between $H_2$ Evolution and Photoelectrical Properties of Photoanode (광어노드의 수소 제조와 광전기 특성에 관한 상관관계 연구)

  • Bae, Sang-Hyun;Kang, Joon-Won;Shim, Eun-Jung;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.244-249
    • /
    • 2007
  • The present work considers the concept of enzymatic photoelectrochemical generation of hydrogen through water splitting using a Xe lamp as a source of light. A solar cell was applied to the system in order to shift the level of electrochemical energy of the system, resulting in the rate of hydrogen production at $43\;{\mu}mol/(cm^2{\times}hr)$ in cathodic compartment with an anodized tubular $TiO_2$ electrode(ATTE, $5^{\circ}C$/1hr in 0.5 wt% HF-$650^{\circ}C$/5hr). The trend of the rate of hydrogen production, for the ATTEs with different annealing temperature from $350^{\circ}C$ to $850^{\circ}C$, fairly well coincided with the photoelectrical properties measured by potentiostat. The actual chemical bias through imposition of two electrolytes of different pHs between anode(13.68) and cathode(7.5) was 0.24eV.