• Title/Summary/Keyword: Xception

Search Result 26, Processing Time 0.024 seconds

Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model (심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측)

  • Donggyun Kim;Nam-Kyun Im
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.376-385
    • /
    • 2023
  • Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.

Comparative analysis by pressure ulcer image size using Xception modeling (Xception 모델링을 이용한 욕창이미지 크기별 비교분석)

  • Jin-beom Seo;Ha-na Yoo;Young-bok Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.19-20
    • /
    • 2023
  • 전이학습은 영상 분류를 진행한 모델을 사용하여 다른 종류의 영상 분류에 적용하여 문제를 푸는 것을 의미하며, 모델 설계부터 진행한 학습 모델보다 빠른 속도와 높은 정확도를 달성할 수 있다. 또한, 적은 데이터셋에 대하여 학습을 진행하여 좋은 결과를 도출할 수 있는 장점이 존재한다. 본 논문에서는 전이학습으로 사용되는 모델 중 Xception 모델을 사용하며, 욕창 이미지의 모델 입력 크기를 256, 512, 1024의 크기로 설정하여 학습을 진행 후 욕창 이미지 크기별 성능을 비교분석을 진행하고자 한다.

  • PDF

Pedestrian Classification using CNN's Deep Features and Transfer Learning (CNN의 깊은 특징과 전이학습을 사용한 보행자 분류)

  • Chung, Soyoung;Chung, Min Gyo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.91-102
    • /
    • 2019
  • In autonomous driving systems, the ability to classify pedestrians in images captured by cameras is very important for pedestrian safety. In the past, after extracting features of pedestrians with HOG(Histogram of Oriented Gradients) or SIFT(Scale-Invariant Feature Transform), people classified them using SVM(Support Vector Machine). However, extracting pedestrian characteristics in such a handcrafted manner has many limitations. Therefore, this paper proposes a method to classify pedestrians reliably and effectively using CNN's(Convolutional Neural Network) deep features and transfer learning. We have experimented with both the fixed feature extractor and the fine-tuning methods, which are two representative transfer learning techniques. Particularly, in the fine-tuning method, we have added a new scheme, called M-Fine(Modified Fine-tuning), which divideslayers into transferred parts and non-transferred parts in three different sizes, and adjusts weights only for layers belonging to non-transferred parts. Experiments on INRIA Person data set with five CNN models(VGGNet, DenseNet, Inception V3, Xception, and MobileNet) showed that CNN's deep features perform better than handcrafted features such as HOG and SIFT, and that the accuracy of Xception (threshold = 0.5) isthe highest at 99.61%. MobileNet, which achieved similar performance to Xception and learned 80% fewer parameters, was the best in terms of efficiency. Among the three transfer learning schemes tested above, the performance of the fine-tuning method was the best. The performance of the M-Fine method was comparable to or slightly lower than that of the fine-tuningmethod, but higher than that of the fixed feature extractor method.

A new framework for Person Re-identification: Integrated level feature pattern (ILEP)

  • Manimaran, V.;Srinivasagan, K.G.;Gokul, S.;Jacob, I.Jeena;Baburenagarajan, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4456-4475
    • /
    • 2021
  • The system for re-identifying persons is used to find and verify the persons crossing through different spots using various cameras. Much research has been done to re-identify the person by utilising features with deep-learned or hand-crafted information. Deep learning techniques segregate and analyse the features of their layers in various forms, and the output is complex feature vectors. This paper proposes a distinctive framework called Integrated Level Feature Pattern (ILFP) framework, which integrates local and global features. A new deep learning architecture named modified XceptionNet (m-XceptionNet) is also proposed in this work, which extracts the global features effectively with lesser complexity. The proposed framework gives better performance in Rank1 metric for Market1501 (96.15%), CUHK03 (82.29%) and the newly created NEC01 (96.66%) datasets than the existing works. The mean Average Precision (mAP) calculated using the proposed framework gives 92%, 85% and 98%, respectively, for the same datasets.

Optimized Deep Learning Techniques for Disease Detection in Rice Crop using Merged Datasets

  • Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.

Diabetic Retinopathy Grading in Ultra-widefield fundus image Using Deep Learning (딥 러닝을 사용한 초광각 망막 이미지에서 당뇨망막증의 등급 평가)

  • Van-Nguyen Pham;Kim-Ngoc T. Le;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.632-633
    • /
    • 2023
  • Diabetic retinopathy (DR) is a prevalent complication of diabetes that can lead to vision impairment if not diagnosed and treated promptly. This study presents a novel approach for the automated grading of diabetic retinopathy in ultra-widefield fundus images (UFI) using deep learning techniques. We propose a method that involves preprocessing UFIs by cropping the central region to focus on the most relevant information. Subsequently, we employ state-of-the-art deep learning models, including ResNet50, EfficientNetB3, and Xception, to perform DR grade classification. Our extensive experiments reveal that Xception outperforms the other models in terms of classification accuracy, sensitivity, and specificity. his research contributes to the development of automated tools that can assist healthcare professionals in early DR detection and management, thereby reducing the risk of vision loss among diabetic patients.

Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling (Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2021
  • In order to quickly and accurately diagnose pneumonia on a chest X-ray image, different batch sizes of 4, 8, 16, and 32 were applied to the same Xception deep learning model, and modeling was performed 3 times, respectively. As a result of the performance evaluation of deep learning modeling, in the case of modeling to which batch size 32 was applied, the results of accuracy, loss function value, mean square error, and learning time per epoch showed the best results. And in the accuracy evaluation of the Test Metric, the modeling applied with batch size 8 showed the best results, and the precision evaluation showed excellent results in all batch sizes. In the recall evaluation, modeling applied with batch size 16 showed the best results, and for F1-score, modeling applied with batch size 16 showed the best results. And the AUC score evaluation was the same for all batch sizes. Based on these results, deep learning modeling with batch size 32 showed high accuracy, stable artificial neural network learning, and excellent speed. It is thought that accurate and rapid lesion detection will be possible if a batch size of 32 is applied in an automatic diagnosis study for feature extraction and classification of pneumonia in chest X-ray images using deep learning in the future.

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery (영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석)

  • Kim, Jong-Hwan;Ryu, Junyeul
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfer learning. However, despite the increase in the number of backbone network models that are the basis of deep learning as well as the diversification of architectures, research on finding a backbone network model suitable for the purpose of operation is insufficient due to the atmosphere of using a certain model. Thus, this study applies the transfer learning into recently developed deep learning backborn network models to build an intelligent system that classifies human activity using imagery. For this, 12 types of active and high-contact human activities based on sports, not basic human behaviors, were determined and 7,200 images were collected. After 20 epochs of transfer learning were equally applied to five backbone network models, we quantitatively analyzed them to find the best backbone network model for human activity classification in terms of learning process and resultant performance. As a result, XceptionNet model demonstrated 0.99 and 0.91 in training and validation accuracy, 0.96 and 0.91 in Top 2 accuracy and average precision, 1,566 sec in train process time and 260.4MB in model memory size. It was confirmed that the performance of XceptionNet was higher than that of other models.