• Title/Summary/Keyword: Xanthomonas axonopodis pv. vesicatoria

Search Result 18, Processing Time 0.02 seconds

Isolation and Taxonomical Characterization of Streptomyces sp. JR-24 with Antibacterial Activity of Bacterial Leaf Spot of Pepper (Xanthomonas axonopodis pv. vesicatoria) (고추 세균성 점무늬병원균(Xanthomonas axonopodis pv. vesicatoria)의 항균활성 Streptomyces sp. JR-24 균주의 분리 및 분류학적 특성)

  • Han, Song-Ih;Lee, Hyo-Jin;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.359-365
    • /
    • 2010
  • Fifty Actinobacteria strains were isolated from rhizosphere soil of Sasa borealis. In the course of screening for antibacterial activity against bacterial leaf spot of pepper (Xanthomonas axonopodis pv. vesicatoria) of isolates, 12 isolates showed strong antibiotic activity. Basis on the 16S rRNA gene sequence, they were belonging to Streptomyces cluster II. Strain JR-24 exhibited strong antibiotic activity against X. axonopodis pv. vesicatoria, had a minimum inhibitory concentration of 10 ${\mu}l$/disc. The strain JR-24 was most closely related to Streptomyces galbus $DSM40089^T$ (98.1%), Streptomyces longwoodensis $LMG20096^T$ (98%) and Streptomyces capoamus $JCM4734^T$ (97.8%). When assayed with the API 20NE and 50 CHE kit, it is positive for utilization of L-arabinose, D-fructose, D-glucose, D-galactose and hydrolysis of gelatin, protein, starch. The strains contained iso-$C_{14:0}$ (25.93%), iso-$C_{15:0}$ (10.13%), anteiso-$C_{15:0}$ (19.29%) and iso-$C_{16:0}$ (20.35%) as major fatty acids and MK-9 (H4), MK-9 (H6), and MK-9 (H8) as the isoprenoid quinone. Strain JR-24 was suggested new species of genus Streptomyces by nearest neighbors of genotypic relationships and phenotypic characterization. This study was important to microbial resources investigation for environment-friendly agriculture.

Near-Isogenic Lines for Genes Conferring Hypersensitive Resistance to Bacterial Spot in Chili Pepper

  • Kim, Byung-Soo;Kim, Young-Chun;Shin, Kwang-Sik;Kim, Jeong-Hoon
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2007
  • In order to develop chili pepper bacterial spot resistant cultivars and near-isogenic lines (NILs) to prompt the molecular mapping of the resistance gene, we have run backcross breeding program since 1994. Two resistance genes against Xanthomonas axonopodis pv. vesicatoria Bs2 from Fla. XVR 3-25 and Bs3 from our breeding line 25-11-3-2, were introduced into a land race, Chilseongcho (abbreviated to Chilseong hereafter) with good fruit guality. We report here the testing of $BC_4F_3\;to\;BC_4F_5$. We found that $BC_4F_5$ lines of the crosses were homozygous with respect to the respective genes of introduction. The lines, in which Bs2 gene was introduced, were hypersensitively resistant to both race 1 and race 3 of X. axonopodis pv. vesicatoria, whereas, those in which Bs3 was introduced were resistant to race 1.

PCR-Based Sensitive Detection and Identification of Xanthomonas oryzae pv. oryzae (중합효소연쇄 반응에 의한 벼 흰잎마름병균의 특이적 검출)

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kim, Jeong-Gu;Kang, Hee-Wan;Noh, Tae-Hwan;Lee, Gil-Bok;Ahn, Joung-Kuk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • A new primer set was developed for the detection and identification of Xanthomonas oryzae pv. oryzae, the bacterial leaf blight (BLB) pathogen in rice plant. The nucleotide sequence of hpaA gene was determined from X. o. pv. oryzae str. KACC10331, and the sequence information was used to design primers for the application of the polymerase chain reaction (PCR). The nucleotide sequence of hpaA from X. o. pv. oryzae str. KACC 10331 was aligned with those of X. campestris pv. vesicatoria, X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines. Based on these results, a primer set(XOF and XOR) was designed for the specific detection of hpaA in X. o. pv. oryzae. The length of PCR products amplified using the primer set was 534-bp. The PCR product was detected from only X. o. pv. oryzae among other Xanthomonas strains and reference bacteria. This product was used to confirm the conservation of hpaA among Xanthomonas strains by Southern-blotting. Furthermore, PCR amplification with XOF and XOR was used to detect the pathogen in an artificially infected leaf. The sensitivity of PCR detection in the pure culture suspension was also determined. This PCR-based detection methods will be a useful method for the detection and identification of X. o. pv. oryzae as well as disease forecasting.

Isolation and characterization of native plasmids carrying avirulence genes in Xanthomonas spp.

  • Sunggi hen;Lee, Seungdon;Jaewoong Jee;Park, Minsun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.1-71
    • /
    • 2003
  • Most major plant pathogenic bacteria in Korea belong to Xanthomonas spp.. Xanthomonas oryzae pv. oryzae is a major pathogen in rice, X. campestris pv. vesicatoria in pepper, X. axonopodis pv. giycines in soybean, X. campestris pv. campestris in cabbage, and X. axonoposid pv. citri in tangerin. Host specificity of the bacterial pathogen depends on the avirulence gene in the pathogen and the corresponding resistance gene in host plants. Many avirulence genes in bacteiral pathogen located on the native plasmids. However, the presence of the native plasmids in Xanthomonas spp. was not investigated well. In order to study the host specificity, we isolated native plasmids from Xanthomonas spp. and compared those plasmids each other, The presence of the native plasmids and the characteristics of the plasmids depended on the bacterial strains. In the X. axonopodis pv. glycines, most strains carried native plasmids but some strains did not. Some strains carry about 60 kb native plasmids including 3 different aviurlence genes. We will discuss the characteristics of the native plasmids isolated from the Xanthomonas spp.

  • PDF

The Effects of Wood Vinegar on Growth and Resistance of Peppers (목초액이 고추의 생장 및 내병성에 미치는 영향)

  • Jeong, Ji-Hyun;Jeong, Da-Eun;Lee, Su-Jin;Seul, Keyung-Jo;Ryul, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.41-44
    • /
    • 2007
  • This study was carried out to investigate the effects of wood vinegar on growth and resistance of peppers. It was observed that heights and dried weights of the peppers treated with diluted wood vinegar were increased, especially 1:500 diluted wood vinegar was the most effective. The Wood vinegar also showed antibacterial activity against Xanthomonas axonopodis pv. vesicatoria directly. The growth of X. axonopodis pv. vesicatoria was completely inhibited when incubated for 12 hours at $30^{\circ}C$ with non diluted wood vinegar. The peppers applied wood vinegar did not show induced systemic resistance after injecting X. axonopodis pv. vesicatoria.

Antagonistic Effect of Lactobacillus sp. Strain KLF01 Against Plant Pathogenic Bacteria Ralstonia solanacearum (세균성 시들음병에 대한 식물성 유산균(Lactobacillus sp.)의 저해효과)

  • Shrestha, Anupama;Choi, Kyu-Up;Lim, Chun-Keun;Hur, Jang-Hyun;Cho, Sae-Youll
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • An antagonistic bacterial strain KLF01 was isolated from rhizosphere of tomato and identified to be Lactobacillus sp. by biochemical and genetic analysis. This strain showed antagonism against the used plant pathogenic bacteria like Ralstonia solanacearum, (bacterial wilt), Xanthomonas axonopodis pv. citri, (Citrus canker), Xanthomonas campestris pv. vesicatoria (Bacterial spot), Eriwinia pyrifoliae (Shoot-blight) and Eriwinia carotovora subsp. carotovora group (Potato scab) through agar well diffusion method. In planta test done by drench application of strain KLF01 $(4{\times}10^8 cfu/ml)$ into the experimental plot containing tomato (Solanum lycopersicum L.) cultivar 'Lokkusanmaru' and red pepper (Capsicum annuum L.) cultivar 'Buja' plants, in pot test post-inoculated with the plant pathogenic bacteria, R. solanacearum significantly reduced the disease severity, compared to the non-treated plants.

Direct PCR Detection of the Causal Agents, Soybean Bacterial Pustule, Xanthomonas axonopodis pv. glycines in Soybean Seeds (콩 종자에서 Xanthomonas axonopodis pv. glycines의 검출을 위한 Direct PCR 방법 개발)

  • Lee, Yong-Ju;Kang, Mi-Hyung;Noh, Tae-Hwan;Lee, Du-Ku;Lee, Geon-Hwi;Kim, Si-Ju
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2009
  • Direct Polymerase Chain Reaction (PCR) method that combines biological and enzymatic amplification of PCR targets was developed for the detection of Xanthomonas axonopodis pv. glycines on soybeen seeds without DNA isolation. Primers Xag F1 and Xag R1 were designed to specifically amplify a 401 bp fragment of the glycinecin A gene of X axonopodis pv. glycines. Xag F1 and Xag R1 were used to carry out the PCR analysis with genomic DNA from 45 different bacterial strains including phylogenetically related bacteria with X axonopodis pv. glycines, and other bacterial strains of different genus and species. The PCR assay using this set of primers were able to detect X axonopodis pv. glycines with DNA concentration as low as 200 fg and $1.8{\times}10^3$ cfu/ml. The Xag was detected from the seed samples incubated for 2 hrs with shaking and the intensity of the band was increase with the incubation time of seeds. The Direct PCR assay method without DNA isolation makes detection of X. axonopodis pv. glycines on soybean seeds easier and more sensitive than other conventional methods. The developed seed assay using direct PCR method will be useful for the specific detection of X. axonopodis pv. glycines in soybean seed samples.

Genetic Diversity of avrBs-like Genes in Three Different Xanthomonas Species Isolated in Korea

  • Oh, Chang-Sik;Lee, Seung-Don;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Plant-pathogenic bacteria including Xanthomonas spp. carry genetic diversity in composition of avirulence genes for interaction with their host plants. Previously, we reported genetic diversity of avirulence genes in X. axonopodis pv. glycines. In this study, we determined genetic diversity of five avirulence genes, avrBs1, avrBs2, avrBs3, avrBs4, and avrRxv, in three other Xanthomonas species isolated in Korea by genomic southern hybridization. Although Korean races of X. campestris pv. vesicatoria that were isolated from year 1995 to 2002 had the same avirulence gene patterns as those that already reported, there was race shift from race 3 to race 1 by acquisition of avrBs3 genes. X. campestris pv. campestris isolated from Chinese cabbage, but not from cabbage or radish, carried two avrBs3 genes, and one of them affected HR-eliciting ability of this bacterium in broccoli. X. oryzae pv. oryzae carried eight to thirteen avrBs3 gene homologs, and this bacterium showed dynamic changes of resistance patterns in rice probably by losing or obtaining avrBs3 genes. These results indicate that avrBs3 gene is more diverse in Xanthomonas spp. than other four avirulence genes and also host ranges of these bacteria can be easily changed by loss or acquisition of avrBs3 genes.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

Xanthomonas euvesicatoria Causes Bacterial Spot Disease on Pepper Plant in Korea

  • Kyeon, Min-Seong;Son, Soo-Hyeong;Noh, Young-Hee;Kim, Yong-Eon;Lee, Hyok-In;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.431-440
    • /
    • 2016
  • In 2004, bacterial spot-causing xanthomonads (BSX) were reclassified into 4 species-Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Bacterial spot disease on pepper plant in Korea is known to be caused by both X. axonopodis pv. vesicatoria and X. vesicatoria. Here, we reidentified the pathogen causing bacterial spots on pepper plant based on the new classification. Accordingly, 72 pathogenic isolates were obtained from the lesions on pepper plants at 42 different locations. All isolates were negative for pectolytic activity. Five isolates were positive for amylolytic activity. All of the Korean pepper isolates had a 32 kDa-protein unique to X. euvesicatoria and had the same band pattern of the rpoB gene as that of X. euvesicatoria and X. perforans as indicated by PCR-restriction fragment length polymorphism analysis. A phylogenetic tree of 16S rDNA sequences showed that all of the Korean pepper plant isolates fit into the same group as did all the reference strains of X. euvesicatoria and X. perforans. A phylogenetic tree of the nucleotide sequences of 3 housekeeping genes-gapA, gyrB, and lepA showed that all of the Korean pepper plant isolates fit into the same group as did all of the references strains of X. euvesicatoria. Based on the phenotypic and genotypic characteristics, we identified the pathogen as X. euvesicatoria. Neither X. vesicatoria, the known pathogen of pepper bacterial spot, nor X. perforans, the known pathogen of tomato plant, was isolated. Thus, we suggest that the pathogen causing bacterial spot disease of pepper plants in Korea is X. euvesicatoria.