• Title/Summary/Keyword: XSBR

Search Result 2, Processing Time 0.015 seconds

Synthesis of Ionic Elastomer Based on Styrene-Butadiene Rubber Containing Methacrylic Acid (Methacrylic Acid가 도입된 Styrene-Butadiene Rubber를 기반으로 한 Ionic Elastomer 합성)

  • Kim, Ki-Hyun;Lee, Jong-Yeop;Choi, Joon-Myeong;Kim, Hee-Jung;Seo, Byeongho;Kim, Bong-Soo;Kwag, Gwang-Hoon;Paik, Hyun-Jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • A new terpolymer, styrene-butadiene-benzyl methacrylate copolymer (BzMA-SBR) was synthesized by emulsion polymerization. After polymerization, XSBR ionomer was prepared by deprotection of benzyl group of BzMA through hydrolysis with NaOH. Carboxyl group contents can be controlled by changing the initial feed contents of BzMA. Structure of BzMA-SBR and XSBR were characterized by FTIR, $^1H$ NMR and DSC.

A Study on Graphene Oxide and Carboxylated Styrene-Butadiene Rubber(XSBR) Nanocomposites (그래핀 옥사이드/카르복실화한 스티렌-부타디엔 고무 나노 복합체에 관한 연구)

  • Jang, Sun Ho;Xu, Li Xiang;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • Graphene oxide (GO)/carboxylated styrene-butadiene rubber (XSBR) nanocomposites with various contents of GO were prepared by a latex compounding method. It has been confirmed that the functional groups of GO and the hydrogen bonds between GO and XSBR are existed. It can be seen that the scorch time ($t_{s2}$), which is the measurement of incipient vulcanization of rubber, showed a delay after the addition of GO. Field emission scanning electron microscopy was employed to confirm the uniform dispersion of filler in the matrix. Indeed, with increasing fillers loading, the torque, tensile strength, thermal stability and crosslink density of obtained nanocomposites were improved. These results were correlated to the better dispersion of fillers through the rubber matrix.

  • PDF