• Title/Summary/Keyword: XRCC4

Search Result 27, Processing Time 0.026 seconds

Polymorphisms of XRCC1 and XRCC2 DNA Repair Genes and Interaction with Environmental Factors Influence the Risk of Nasopharyngeal Carcinoma in Northeast India

  • Singh, Seram Anil;Ghosh, Sankar Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2811-2819
    • /
    • 2016
  • Multiple genetic and environmental factors have been reported to play key role in the development of nasopharyngeal carcinoma (NPC). Here, we investigated interactions of XRCC1 Arg399Gln and XRCC2 Arg188His polymorphisms and environmental factors in modulating susceptibility to NPC in Northeast India. One-hundred NPC patients, 90 first-degree relatives of patients and 120 controls were enrolled in the study. XRCC1 Arg399Gln and XRCC2 Arg188His polymorphisms were determined using PCR-RFLP, and the results were confirmed by DNA sequencing. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approaches were applied for statistical analysis. The XRCC1 Gln/Gln genotype showed increased risk (OR=2.76; P<0.024) of NPC. However, individuals with both XRCC1 and XRCC2 polymorphic variants had 3.2 fold elevated risk (P<0.041). An enhanced risk of NPC was also observed in smoked meat (OR=4.07; P=0.004) and fermented fish consumers (OR=4.34, P=0.001), and tobacco-betel quid chewers (OR=7.00; P=0.0001) carrying XRCC1 polymorphic variants. However, smokers carrying defective XRCC1 gene showed the highest risk (OR = 7.47; P<0.0001). On MDR analysis, the best model for NPC risk was the five-factor model combination of XRCC1 variant genotype, fermented fish, smoked meat, smoking and chewing (CVC=10/10; TBA=0.636; P<0.0001); whereas in interaction entropy graphs, smoked meat and tobacco chewing showed synergistic interactions with XRCC1. These findings suggest that interaction of genetic and environmental factors might increase susceptibility to NPC in Northeast Indian populations.

Association of Functional Polymorphisms of the XRCC4 Gene with the Risk of Breast Cancer: A Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Ma, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3431-3436
    • /
    • 2012
  • Objective: X-ray cross-complementing group 4 (XRCC4) is a major repair gene for DNA double-strand breaks (DSB) in the non-homologous end-joining (NHEJ) pathway. Several potentially functional polymorphisms of the XRCC4 gene have been implicated in breast cancer risk, but individually published studies showed inconclusive results. The aim of this meta-analysis was to investigate the association between XRCC4 polymorphisms and the risk of breast cancer. Methods: The MEDLINE, EMBASE, Web of science and CBM databases were searched for all relevant articles published up to June 20, 2012. Potential associations were assessed with comparisons of the total mutation rate (TMR), complete mutation rate (CMR) and partial mutation rate (PMR) in cases and controls. Statistical analyses were performed using RevMan 5.1.6 and STATA 12.0 software. Results: Five studies were included with a total of 5,165 breast cancer cases and 4,839 healthy controls. Meta-analysis results showed that mutations of rs2075686 (C>T) and rs6869366 (G>T) in the XRCC4 gene were associated with increased risk of breast cancer, while rs2075685 (G>T) and rs10057194 (A>G) might decrease the risk of breast cancer. However, rs1805377 (A>G), rs1056503 (G>T), rs28360317 (ins>del) and rs3734091 (A>G) polymorphisms of XRCC4 gene did not appear to have an influence on breast cancer susceptibility. Conclusion: Results from the current meta-analysis suggest that the rs2075685 (G>T) and rs6869366 (G>T) polymorphisms of the XRCC4 gene might increase the risk of breast cancer, whereas rs2075685 (G>T) and rs10057194 (A>G) might be protective factors.

Polymorphisms in DNA Repair Genes and Risk of Glioma and Meningioma

  • Luo, Ke-Qin;Mu, Shi-Qing;Wu, Zhong-Xue;Shi, Yi-Ni;Peng, Ji-Cai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.449-452
    • /
    • 2013
  • Polymorphisms in DNA repair genes have been shown to influence DNA repair processes and to modify cancer susceptibility. Here we conducted a case-control study to assess the role of potential SNPs of DNA repair genes on the risk of glioma and meningioma. We included 297 cases and 458 cancer-free controls. Genotyping of XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC2 Arg188His, XRCC3 Thr241Met, XRCC4 Ala247Ser, ERCC1 Asn118Asp, ERCC2 Lys751Gln and ERCC5 Asp1558His were performed in a 384-well plate format on the Sequenom MassARRAY platform. XRCC1 Arg194Trp (rs1799782) and ERCC2 Asp312Asn rs1799793 did not follow the HWE in control group, and genotype distributions of XRCC1 Gln399Arg rs25487, XRCC2 Arg188His rs3218536 and ERCC2 Asp312Asn rs1799793 were significantly different between cases and controls (P<0.05). We found XRCC1 399G/G, XRCC1 194 T/T and XRCC3 241T/T were associated with a higher risk when compared with the wild-type genotype. For ERCC5 Asp1558His, we found G/G genotype was associated with elevated susceptibility. In conclusion, our study has shown that XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC3 Thr241Met and ERCC5 Asp1558His are associated with risk of gliomas and meningiomas. This finding could be useful in identifying the susceptibility genes for these cancers.

Polymorphism in the DNA Repair Gene XRCC1 Associated with Squamous Cell Carcinoma and Basal Cell Carcinoma of the Skin in Koreans (한국인의 피부 기저세포암종과 편평세포암종의 XRCC1 유전자 다형)

  • Kang, Sang Yoon;Lee, Goang Gil;Shim, Jeong Yun;Chung, Yoon Gyu;Kim, Nam Keun;Min, Wan Kee
    • Archives of Plastic Surgery
    • /
    • v.33 no.4
    • /
    • pp.433-439
    • /
    • 2006
  • Purpose: DNA in most cell is regularly damaged by endogenous and exogenous mutagens. Unrepaired damage resulted in apoptosis or may lead to unregulated cell growth and cancer. Inheritance of genetic variants at one or more loci results in an reduced DNA repair capacity. These polymorphisms are highly prevalent in the population, and therefore the attributable risks for cancer could be high. Several studies have documented that polymorphisms of XRCC1, XPD and XRCC3 are associated with skin cancer, especially, XRCC1 among of them has been reported frequently. So, this study involves the relationship between mutation of XRCC1 of squamous cell and basal cell cancer of the skin and risk of cancer development in Korean population. Methods: In case control study, study population (n=100, each cancer) is patients who were pathologically diagnosed as skin cancer(squamous cell carcinoma and basal cell carcinoma) in Yonsei Wonju Christian Hospital and Bundang CHA General Hospital between 1998 and 2004. The samples of DNA from whom no history of premalignant skin lesion and other malignant diseases were reported belonged to the control group(n=210). Blood and tissue samples were analyzed for presence of XRCC1 Arg399Glu, Arg280His, Arg194Trp using PCR/ RFLP method. Results: For Korean, there was a significant correlation between XRCC1 Arg399Gln gene mutation and risk of basal cell carcinoma development(Arg 399Gln(GA), p=0.012, OR=2.016, 95% CI; 1.230-3.305) /Arg399Gln (AA), p=0.011, OR=1.864, 95% CI; 1.149-3.026)). And, there was also significant correlation between XRCC1 Arg194Trp and risk of skin squamous cell carcinoma development (Arg194Trp (CT+TT), p=0.041, OR=0.537, 95% CI; 0.301-0.960)). In contrast, there was no significant correlation between XRCC1 Arg280His and risk of either basal cell carcinoma or squamous cell carcinoma development. Conclusions: Our result present that XRCC1 Arg399 Gln in basal cell carcinoma and XRCC1 Arg194Trp in squamous cell carcinoma have possibility of cancer risk and biomarker in Korean population. But XRCC1 Arg280 His known having cancer risk on other studies is not associated with cancer risk to squamous cell carcinoma and basal cell carcinoma in Korean population.

XRCC1 Gene Polymorphism, Diet and Risk of Colorectal Cancer in Thailand

  • Poomphakwaen, Kirati;Promthet, Supannee;Suwanrungruang, Krittika;Chopjitt, Peechanika;Songserm, Nopparat;Wiangnon, Surapon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7479-7486
    • /
    • 2014
  • Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. This study aimed to investigate the interaction between the presence of a polymorphism of the XRCC1 gene and known risk factors for colorectal cancer in Thailand. Materials and Methods: A hospital-based case-control study was conducted in Thailand. The participants were 230 histologically confirmed new cases and 230 controls matched by sex and age and recruited from the same hospital. Information about demographic characteristics, life style, and dietary habits was collected using structured interviews, and blood samples were taken which were used for the detection of a homozygous and heterozygous polymorphisms of XRCC1. Associations were assessed using multiple conditional logistic regression. Results: In the univariate analysis, factors found to be significantly associated with an increased risk for CRC were the presence of the XRCC1 AA homozygote (OR= 4.95; 95% CI: 1.99-12.3), a first degree family history of cancer (OR= 1.74; 95% CI: 1.18-2.58), and a high frequency of pork consumption (OR= 1.49; 95% CI: 1.00-2.21). Intakes of fish fruit and vegetables appeared to be protective factors, but the associations were not statistically significant. In the multivariate analysis only the XRCC1 AA homozygote polymorphism and a family history of cancer emerged as risk factors (OR= 4.96; 95% CI: 1.90- 12.95 and OR=1.80; 95% CI: 1.18-2.72, respectively). Conclusions: While the XRCC1 AA homozygote and a family history of cancer were found to be associated with an increased risk of CRC, none of the dietary intake variables were clearly identified as risk or protective factors. There is a need for further research to determine the reasons for this.

Interaction of XRCC1 and XPD Gene Polymorphisms with Lifestyle and Environmental Factors Regarding Susceptibility to Lung Cancer in a High Incidence Population in North East India

  • Saikia, Bhaskar Jyoti;Phukan, Rup Kumar;Sharma, Santanu Kumar;Sekhon, Gaganpreet Singh;Mahanta, Jagadish
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1993-1999
    • /
    • 2014
  • Background: This study aimed to explore the role of XRCC1 (Arg399Gln) and XPD (Lys751Gln) gene polymorphisms, lifestyle and environmental factors as well as their possible interactions in propensity to develop lung cancer in a population with high incidence from North East India. Materials and Methods: A total of 272 lung cancer cases and 544 controls were collected and XRCC1 (Arg399Gln) and XPD (Lys751Gln) genotypes were analyzed using a polymerase chain reaction based restriction fragment length polymorphism assay. Conditional multiple logistic regression analysis was used to calculate adjusted odds ratios and 95% confidence intervals after adjusting for confounding factors. Results: The combined Gln/Gln genotype of XRCC1 and XPD genes (OR=2.78, CI=1.05-7.38; p=0.040) was significantly associated with increased risk for lung cancer. Interaction of XRCC1Gln/Gln genotype with exposure of wood combustion (OR=2.56, CI=1.16-5.66; p=0.020), exposure of cooking oil fumes (OR=3.45, CI=1.39-8.58; p=0.008) and tobacco smoking (OR=2.54, CI=1.21-5.32; p=0.014) and interaction of XPD with betel quid chewing (OR=2.31, CI=1.23-4.32; p=0.009) and tobacco smoking (OR=2.13, CI=1.12-4.05; p=0.022) were found to be significantly associated with increased risk for lung cancer. Conclusions: Gln/Gln alleles of both XRCC1 and XPD genes appear to amplify the effects of household exposure, smoking and betel quid chewing on lung cancer risk in the study population.

Association Between Single Nucleotide Polymorphisms in the XRCC1 Gene and Susceptibility to Prostate Cancer in Chinese Men

  • Zhou, Yun-Feng;Zhang, Guang-Bo;Qu, Ping;Zhou, Jian;Pan, Hui-Xin;Hou, Jian-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5241-5243
    • /
    • 2012
  • Background: Prostate cancer (Pca) is one of the most common complex and polygenic diseases in men. The X-ray repair complementing group 1 gene (XRCC1) is an important candidate in the pathogenesis of Pca. The purpose of this study was to evaluate the association between single nucleotide polymorphisms in the XRCC1 gene and susceptibility to Pca. Materials and Methods: XRCC1 gene polymorphisms and associations with susceptibility to Pca were investigated in 193 prostate patients and 188 cancer-free Chinese men. Results: The c.910A>G variant in the exon9 of XRCC1 gene could be detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods. Significantly increased susceptibility to prostate cancer was noted in the homozygote comparison (GG versus AA: OR=2.95, 95% CI 1.46-5.42, ${\chi}^2$=12.36, P=0.001), heterozygote comparison (AG versus AA: OR=1.76, 95% CI 1.12-2.51, ${\chi}^2$=4.04, P=0.045), dominant model (GG/AG versus AA: OR=1.93, 95% CI 1.19-2.97, ${\chi}^2$=9.12, P=0.003), recessive model (GG versus AG+AA: OR=2.17, 95% CI 1.33-4.06, ${\chi}^2$=8.86, P=0.003) and with allele contrast (G versus A: OR=1.89, 95% CI 1.56-2.42, ${\chi}^2$=14.67, P<0.000). Conclusions: These findings suggest that the c.910A>G polymorphism of the XRCC1 gene is associated with susceptibility to Pca in Chinese men, the G-allele conferring higher risk.

The XRCC3 Thr241Met Polymorphism Influences Glioma Risk - A Meta-analysis

  • Jiang, Jun;Quan, Xun-Feng;Zhang, Li;Wang, Yi-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3169-3173
    • /
    • 2013
  • Background: Findings from previous published studies regarding the association of the XRCC3 Thr241Met polymorphism with glioma susceptibility have often been conflicting. Therefore, a meta-analysis including all available publications was carried out to make a more precise estimation of the potential relationship. Methods: By searching the electronic databases of Pubmed and Embase (up to April 1st, 2013), a total of nine case-control studies with 3,752 cases and 4,849 controls could be identified for inclusion in the current meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of the association. Results: This meta-analysis showed the XRCC3 Thr241Met polymorphism to be significantly associated with decreased glioma risk in the allelic model (Met allele vs. Thr allele: OR= 0.708, 95%CI= 0.631-0.795). Moreover, we also observed a statistically significant association between the XRCC3 Thr241Met polymorphism and reduced glioma risk in analyses stratified by ethnicity (Asian) and source of controls (hospital based) in the allelic model. Conclusions: Current evidence suggests that the XRCC3 Thr241Met polymorphism may be a risk factor for glioma development, especially in Asians.

Association between the XRCC3 Thr241Met Polymorphism and Gastrointestinal Cancer Risk: A Meta-Analysis

  • Sahami-Fard, Mohammad Hossein;Mayali, Ali Reza Mousa;Tajehmiri, Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4599-4608
    • /
    • 2016
  • Background: The x-ray repair cross-complementing group 3 (XRCC3) encodes a protein involved in the homologous recombination repair (HRR) pathway for double-strand DNA repair. Associations of the XRCC3 Thr241Met polymorphism with various cancers have been widely reported. However, published data on links between XRCC3 Thr241Met and gastrointestinal (GI) cancer risk are inconsistent. Objective and Methods: A meta-analysis was conducted to characterize the relationship between XRCC3 Thr241Met polymorphisms and GI cancer risk. Pooled odds ratios (ORs) and 95.0% confidence intervals were assessed using random- or fixed- effect models for 28.0 relevant articles with 30.0 studies containing 7,649.0 cases and 11,123.0 controls. Results: The results of the overall meta-analysis suggested a borderline association between the XRCC3 Thr241Met polymorphism and GI cancer susceptibility (T vs. C: OR=1.18, 9 % CI=1.0-1.4, POR=0.04; TT vs. CT+CC: OR=1.3, 95 % CI=1.0-1.6, POR=0.04). After removing studies not conforming to Hardy-Weinberg equilibrium (HWE), however, this association disappeared (T vs. C: OR=1.00, 95 % CI=0.9-1.1, POR=0.96; TT vs. CT+CC: OR=0.9, 95 % CI=0.8-1.1, POR=0.72). When stratified by ethnicity, source of controls or cancer type, although some associations between XRCC3 Thr241Met polymorphism and GI cancer susceptibility were detected, these associations no longer existed after removing studies not conforming to HWE. Conclusion: Our meta-analysis suggests that the XRCC3 Thr241Met polymorphism is not associated with risk of GI cancer based on current evidence.

Relationship between XRCC1 Polymorphism and Acute Complication of Chemoradiation Therapy in the Patients with Colorectal Cancer (대장, 직장암 환자에서 화학방사선치료의 급성 부작용과 XRCC1 유전자 다형성과의 상관관계)

  • Kim Woo-Chul;Hong Yun-Chul;Choi Sun-Keun;Woo Ze-Hong;Nam Jeong-Hyun;Choi Gwang-Seong;Lee Moon-Hee;Kim Soon-Ki;Song Sun-U.;Loh John-Jk
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Purpose: It is well known from clinical experience that acute complications of chemoradiation therapy vary from patients to patients. However, there are no known factors to predict these acute complications before treatment starts. The human XRCC1 gene is known as a DNA base excision repair gene. We investigated the possibilities of XRCC1 gene polymorphisms as a predictor for the acute complications of chemoradiation therapy in colorectal cancer patients. Materials and Methods: From July 1997 to June 2003, 86 colorectal cancer patients (71 rectal cancer, 13 sigmoid colon cancer and 2 colon cancer patients) were treated with chemoradiation therapy at the Department of Radiation Oncology, Inha University Hospital. Twenty-two patients were in stage B, 50 were in stage C, 8 were in stage D and 6 patients were unresectable cases. External radiation therapy was delivered with 10MV X-ray at a 1.8 Gy fraction per day for a total dose of radiation of $30.6{\sim}59.4 Gy$ (median: 54 Gy). All the patients received 5-FU based chemotherapy regimen. We analyzed the acute complications of upper and lower gastrointestinal tract based on the RTOG complication scale. The initial and lowest WBC and platelet count were recorded during both the RT period and the whole treatment period. Allelic variants of the XRCC1 gene at codons 194, 280 and 399 were analyzed in the lymphocyte DNA by performing PCR-RFLP. Statistical analyses were carried out with the SAS (version 6.12) statistical package. Results: When all the variables were assessed on the multivariate analysis, recurrent disease revealed the factors that significantly correlated with upper gastrointestinal acute complications. Arg399Gln polymorph isms of the XRCC1 gene, the radiation dose and the frequencies of chemotherapy during radiation therapy were significantly correlated with lower gastrointestinal complications. Arg399Gln polymorph isms also affected the decrease of the WBC and platelet count during radiation therapy. Conclusion: Although the present sample size was too small for fully evaluating this hypothesis, this study suggests that Arg399Gln polymorph isms of the XRCC1 genes may be used as one of the predictors for acute complications of chemoradiation therapy in colorectal cancer patients.