• Title/Summary/Keyword: XOR Bit

Search Result 90, Processing Time 0.031 seconds

XOR-based High Quality Information Hiding Technique Utilizing Self-Referencing Virtual Parity Bit (자기참조 가상 패리티 비트를 이용한 XOR기반의 고화질 정보은닉 기술)

  • Choi, YongSoo;Kim, HyoungJoong;Lee, DalHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.156-163
    • /
    • 2012
  • Recently, Information Hiding Technology are becoming increasingly demanding in the field of international security, military and medical image This paper proposes data hiding technique utilizing parity checker for gray level image. many researches have been adopted LSB substitution and XOR operation in the field of steganography for the low complexity, high embedding capacity and high image quality. But, LSB substitution methods are not secure through it's naive mechanism even though it achieves high embedding capacity. Proposed method replaces LSB of each pixel with XOR(between the parity check bit of other 7 MSBs and 1 Secret bit) within one pixel. As a result, stego-image(that is, steganogram) doesn't result in high image degradation. Eavesdropper couldn't easily detect the message embedding. This approach is applying the concept of symmetric-key encryption protocol onto steganography. Furthermore, 1bit of symmetric-key is generated by the self-reference of each pixel. Proposed method provide more 25% embedding rate against existing XOR operation-based methods and show the effect of the reversal rate of LSB about 2% improvement.

Fault Detection Architecture of the Field Multiplication Using Gaussian Normal Bases in GF(2n (가우시안 정규기저를 갖는 GF(2n)의 곱셈에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su;Park, Young Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this paper, we proposed an error detection in Gaussian normal basis multiplier over $GF(2^n)$. It is shown that by using parity prediction, error detection can be very simply constructed in hardware. The hardware overheads are only one AND gate, n+1 XOR gates, and one 1-bit register in serial multipliers, and so n AND gates, 2n-1 XOR gates in parallel multipliers. This method are detect in odd number of bit fault in C = AB.

Matrix type CRC and XOR/XNOR for high-speed operation in DDR4 and GDDR5 (DDR4/GDDR5에서 고속동작을 위한 matrix형 CRC 및 XOR/XNOR)

  • Lee, JoongHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.136-142
    • /
    • 2013
  • CRC features have been added to increase the reliability of the data in memory products for high-speed operation, such as DDR4. High-speed memory products in a shortage of internal timing margin increases for the CRC calculation. Because the existing CRC requires many additional circuit area and delay time. In this paper, we show that the matrix-type CRC and a new XOR/XNOR gate could be improved the circuit area and delay time. Proposed matrix-type CRC can detect all odd-bit errors and can detect even number of bit errors, except for multiples of four bits. In addition, a single error in the error correction can reduce the burden of re-transmission of data between memory products and systems due to CRC errors. In addition, the additional circuit area, compared to existing methods can be improved by 57%. The proposed XOR gate which is consists of six transistors, it can reduce the area overhead of 35% compared to the existing CRC, 50% of the gate delay can be reduced.

All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier

  • Kaur, Sanmukh;Kaler, Rajinder-Singh;Kamal, Tara-Singh
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2015
  • We propose a new and potentially integrable scheme for the realization of an all-optical binary full adder employing two XOR gates, two AND gates, and one OR gate. The XOR gate is realized using a Mach-Zehnder interferometer (MZI) based on a semiconductor optical amplifier (SOA). The AND and OR gates are based on the nonlinear properties of a semiconductor optical amplifier. The proposed scheme is driven by two input data streams and a carry bit from the previous less-significant bit order position. In our proposed design, we achieve extinction ratios for Sum and Carry output signals of 10 dB and 12 dB respectively. Successful operation of the system is demonstrated at 10 Gb/s with return-to-zero modulated signals.

Secure Fingerprint Identification System based on Optical Encryption (광 암호화를 이용한 안전한 지문 인식 시스템)

  • 한종욱;김춘수;박광호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2415-2423
    • /
    • 1999
  • We propose a new optical method which conceals the data of authorized persons by encryption before they are stored or compared in the pattern recognition system for security systems. This proposed security system is made up of two subsystems : a proposed optical encryption system and a pattern recognition system based on the JTC which has been shown to perform well. In this system, each image of authorized persons as a reference image is stored in memory units through the proposed encryption system. And if a fingerprint image is placed in the input plane of this security system for access to a restricted area, the image is encoded by the encryption system then compared with the encrypted reference image. Therefore because the captured input image and the reference data are encrypted, it is difficult to decrypt the image if one does not know the encryption key bit stream. The basic idea is that the input image is encrypted by performing optical XOR operations with the key bit stream that is generated by digital encryption algorithms. The optical XOR operations between the key bit stream and the input image are performed by the polarization encoding method using the polarization characteristics of LCDs. The results of XOR operations which are detected by a CCD camera should be used as an input to the JTC for comparison with a data base. We have verified the idea proposed here with computer simulations and the simulation results were also shown.

  • PDF

Study of the Switching Errors in an RSFQ Switch by Using a Computerized Test Setup (자동측정장치를 사용한 RSFQ switch의 Switching error에 관한 연구)

  • Kim, Se-Hoon;Baek, Seung-Hun;Yang, Jung-Kuk;Kim, Jun-Ho;Kang, Joon-Hee
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been a very important issue. In this work, we calculated the bit error rate of an RSFQ switch used in superconductive arithmetic logic unit (ALU). RSFQ switch should have a very low error rate in the optimal bias. Theoretical estimates of the RSFQ error rate are on the order of $10^{-50}$ per bit operation. In this experiment, we prepared two identical circuits placed in parallel. Each circuit was composed of 10 Josephson transmission lines (JTLs) connected in series with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to both circuits. The outputs of the two circuits were compared with an RSFQ exclusive OR (XOR) to measure the bit error rate of the RSFQ switch. By using a computerized bit-error-rate test setup, we measured the bit error rate of $2.18{\times}10^{-12}$ when the bias to the RSFQ switch was 0.398 mA that was quite off from the optimum bias of 0.6 mA.

  • PDF

Amplified Boomerang Attack against Reduced-Round SHACAL (SHACAL의 축소 라운드에 대한 확장된 부메랑 공격)

  • 김종성;문덕재;이원일;홍석희;이상진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.87-93
    • /
    • 2002
  • SHACAL is based on the hash standard SHA-1 used in encryption mode, as a submission to NESSIE. SHACAL uses the XOR, modular addition operation and the functions of bit-by-bit manner. These operations and functions make the differential cryptanalysis difficult, i.e, we hardly find a long differential with high probability. But, we can find short differentials with high probability. Using this fact, we discuss the security of SHACAL against the amplified boomerang attack. We find a 36-step boomerang-distinguisher and present attacks on reduced-round SHACAL with various key sizes. We can attack 39-step with 256-bit key, and 47-step with 512-bit key.

A Novel Design of a Low Power Full Adder (새로운 저전력 전가산기 회로 설계)

  • Kang, Sung-Tae;Park, Seong-Hee;Cho, Kyoung-Rok;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.3
    • /
    • pp.40-46
    • /
    • 2001
  • In this paper, a novel low power full adder circuit comprising only 10 transistors is proposed. The circuit is based on the six -transistor CMOS XOR circuit, which generates both XOR and XNOR signals and pass transistors. This adder circuit provides a good low power characteristics due to the smaller number of transistors and the elimination of short circuit current paths. Layouts have been carried out using a 0.65 ${\mu}m$ ASIC design rule for evaluation purposes. The physical design has been evaluated using HSPICE at 25MHz to 50MHz. The proposed circuit has been used to build 2bit and 8bit ripple carry adders, which are used for evaluation of power consumption, time delay and rise and fall time. The proposed circuit shows substantially improved power consumption characteristics, about 70% lower than transmission gate full adder (TFA), and 60% lower than a design using 14 transistors (TR14). Delay and signal rise and fall time are also far shorter than other conventional designs such as TFA and TR14.

  • PDF

Design of Bit Manipulation Accelerator fo Communication DSP (통신용 DSP를 위한 비트 조작 연산 가속기의 설계)

  • Jeong Sug H.;Sunwoo Myung H.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.11-16
    • /
    • 2005
  • This paper proposes a bit manipulation accelerator (BMA) having application specific instructions, which efficiently supports scrambling, convolutional encoding, puncturing, and interleaving. Conventional DSPs cannot effectively perform bit manipulation functions since かey have multiply accumulate (MAC) oriented data paths and word-based functions. However, the proposed accelerator can efficiently process bit manipulation functions using parallel shift and Exclusive-OR (XOR) operations and bit jnsertion/extraction operations on multiple data. The proposed BMA has been modeled by VHDL and synthesized using the SEC $0.18\mu m$ standard cell library and the gate count of the BMA is only about 1,700 gates. Performance comparisons show that the number of clock cycles can be reduced about $40\%\sim80\%$ for scrambling, convolutional encoding and interleaving compared with existing DSPs.