• Title/Summary/Keyword: XIAP

Search Result 59, Processing Time 0.022 seconds

The Effects of Fucoidan on the Activation of Macrophage and Anticancer in Gastric Cancer Cell (Fucoidan의 면역세포 활성 및 위암 세포주에서의 항암효과)

  • An, In-Jung;Cho, Sung-Dae;Kwon, Jung-Ki;Kim, Hye-Ri;Yu, Hyun-Ju;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.406-414
    • /
    • 2012
  • This study was designed to investigate the effect of fucoidan on the activation of macrophage and on induction of apoptosis in AGS cell. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cell. Treatment with fucoidan significantly increased production of NO and TNF-${\alpha}$, indicating activation of macrophages. The result of MTT assay shows that cell viability was significantly decreased in a dose and time-dependent manner. Fucoidan increased to enhance mitochondrial membrane permeability, as well as the cytochrome c release from the mitochondria. Fucoidan decreased Bcl-2 and XIAP expression, whereas the expression of Bax was increased in a time-dependent manner compared to the control. In addition, the active forms of caspase-9 were increased, and the inactivation of Akt was decreased in a time-dependent manner. Caspase inhibitor, z-VAD-FMK, canceled the apoptosis of fucoidan, expression of Bax and caspase-9 were decrease. These results indicate that fucoidan induces activation of macrophage and apoptosis through activation of caspase on AGS cell.

Bee Venom Inhibits DU-145 Cell Proliferation Through Induction of Apoptosis (Bee Venom이 세포자멸사를 통해 DU-145 세포의 증식에 미치는 영향)

  • Hur, Keun-Young;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.28 no.3
    • /
    • pp.111-119
    • /
    • 2011
  • 목적 : 이 연구는 봉독이 세포자멸사 관련 단백질의 발현 조절을 통하여 세포자멸사를 유도하고 전립선 암세포주인 DU-145 세포의 성장을 억제하는지를 확인하고 해당 기전을 살펴보고자 하였다. 방법 : 봉독을 처리한 후 DU-145의 세포자멸사를 관찰하기 위해 TUNEL staining assay를 시행하였으며, 세포자멸사 조절단백질의 변동 관찰에는 western blot analysis를 시행하였다. 결과 : DU-145 세포에 봉독을 처리한 후, 세포자멸사의 유발, 세포자멸사 관련 단백질의 발현에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. DU-145 세포에서 봉독을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었다. 2. 세포자멸사 관련 단백질 중 분리된 pro-apoptotic proteins인 PARP, caspase-3, caspase-9은 유의한 증가를 나타내었다. 3. 세포자멸사 관련 단백질 중 분리된 anti-apoptotic proteins인 Bcl-2, p-AKT, XIAP, cIAP2는 유의한 감소를, MMP2, MMP13은 유의한 증가를 나타내었다. 결론 : 이상의 결과는 봉독이 인간 전립선 암세포주인 DU-145의 세포자멸사를 유발함으로써 전립선암세포 증식억제 효과가 있음을 입증한 것으로 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 도움이 될 것으로 기대된다.

The Effect of overcoming the TRAIL resistance through bufalin in EJ human bladder cancer cell (EJ 인간 방광암 세포에서 bufalin 의 TRAIL 저항성 극복 효과)

  • Hong, Su Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • Objectives : Bufalin is one of the bioactive component of 'Sum Su (蟾酥)', which is obtained from the skin and parotid venom gland of toad. Bufalin has been known to possess the inhibitory effects on cell proliferation and inducing apoptosis in various cancer cells. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has concerned, because it can selectively induce apoptotic cell death in many types of malignant cells, while it is relatively non-toxic to normal cells. Here, we investigated whether bufalin can trigger TRAIL-induced apoptotic cell death in EJ human bladder cancer cells. Methods : Effects on the cell viability and apoptotic activity were quantified using MTT assay and flow cytometry analysis, respectively. To investigate the morphological change of nucleus, DAPI staining was performed. Protein expressions were measured by immunoblotting. Results : A combined treatment with bufalin (10 nM) and TRAIL (50 ng/ml) significantly promoted TRAIL-mediated growth inhibition and apoptosis in EJ cells. The apoptotic effects were associated with the up-regulation of death receptor proteins, and the down-regulation of cFLIP and XIAP. Moreover, our data showed that bufalin and TRAIL combination activated caspases and subsequently increased degradation of poly(ADP-ribose) polymerase. Conclusions : Taken altogether, the nontoxic doses of bufalin sensitized TRAIL-mediated apoptosis in EJ cells. Therefore, bufalin might be an effective therapeutic strategy for the safe treatment of TRAIL-resistant bladder cancers.

In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest

  • Paramasivam, Arumugam;Raghunandhakumar, Subramanian;Priyadharsini, Jayaseelan Vijayashree;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8313-8319
    • /
    • 2016
  • We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose-dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

Targeted Silencing of Inhibitors of Apoptosis Proteins with siRNAs: A Potential Anti-cancer Strategy for Hepatocellular Carcinoma

  • Li, Gang;Chang, Hong;Zhai, Yun-Peng;Xu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4943-4952
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, tecurrence, and resistance to chemo-or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recogized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. There proteins all contribute to ingibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes cab be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.

Inhibitory Effect of Snake Venom Toxin on Colorectal Cancer HCT116 Cells Growth through Induction of Intrinsic or Extrinsic Apoptosis

  • Kim, Kyung Tae;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.30 no.1
    • /
    • pp.43-55
    • /
    • 2013
  • I investigated whether snake venom toxin(SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, 8, 9 and Bax. However, the expression of survival proteins(eg, cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the reactive oxygen species(ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the apoptosis related protein such as caspase-3 and-9 as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in human colorectal cancer HCT116 cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS pathway signals.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

Microarray Study of Genes Differentially Modulated in Response to Nitric Oxide in Macrophages

  • Nan, Xuehua;Maeng, Oky;Shin, Hyo-Jung;An, Hyun-Jung;Yeom, Young-Il;Lee, Hay-Young;Paik, Sang-Gi
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Nitric oxide(NO) has been known to play important roles in numerous physiologic processes including neurotransmission, vasorelaxation, and cellular apoptosis. Using a mouse cDNA gene chip, we examined expression patterns and time course of NO-dependent genes in mouse macrophage RAW264.7 cells. Genes shown to be upregulated more than two fold or at least at two serial time points were further selected and validated by RT-PCR. Finally, 81 selected genes were classified by function as signaling, apoptosis, inflammation, transcription, translation, ionic homeostasis and metabolism. Among those, genes related with signaling, apoptosis and inflammation, such as guanylate cyclase 1, soluble, alpha3(Gucy1a3); protein kinase C, alpha($Pkc{\alpha}$); lymphocyte protein tyrosine kinase(Lck); BCL2/adenovirus E1B 19 kDa-interacting protein(Bnip3); apoptotic protease activating factor 1(Apaf1); X-linked inhibitor of apoptosis(Xiap); cyclin G1(Ccng1); chemokine(C-C motif) ligand 4(Ccl4); B cell translocation gene 2, anti-proliferative(Btg2); lysozyme 2(Lyz2); secreted phosphoprotein 1(Spp1); heme oxygenase(decycling) 1(Hmox1); CD14 antigen(Cd14); and granulin(Grn) may play important roles in NO-dependent responses in murine macrophages.

In vitro and In vivo Antitumor Activity of Tiliacorinine in Human Cholangiocarcinoma

  • Janeklang, Somkid;Nakaew, Archawin;Vaeteewoottacharn, Kulthida;Seubwai, Wunchana;Boonsiri, Patcharee;Kismali, Gorkem;Suksamrarn, Apichart;Okada, Seiji;Wongkham, Sopit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7473-7478
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is a fatal cancer with poor prognosis and less than 10% of CCA patients can be offered surgical cure. Conventional chemotherapy results in unfavorable outcomes. At present, plant-derived compounds are gaining interest as potential cancer therapeutics, particularly for treatment-refractory cancers. In this study, antitumor activity of tiliacorinine, the major alkaloid isolated from a tropical plant, on CCA was first demonstrated. Antiproliferative effects of tiliacorinine on human CCA cell lines were investigated using SRB assays. Acridine orange/ethidium bromide staining, flow cytometric analysis and DNA laddering assays were used for apoptotic determination. Apoptosis-related proteins were verified by Western blotting and antitumor activity of tiliacorinine in vivo was demonstrated in CCA xenografted mice. Tiliacorinine significantly inhibited proliferation of human CCA cell lines with $IC_{50}$ $4.5-7{\mu}M$ by inducing apoptosis through caspase activation, upregulation of BAX, and downregulation of $Bcl_{xL}$ and XIAP. Tiliacorinine considerably reduced tumor growth in CCA xenografted mice. These results demonstrated antitumor effects of tiliacorinine on human CCA in vitro and in vivo. Tiliacorinine may be an effective agent for CCA treatment.

Inhibition Effect of Trachelospermi Caulis on the Inflammation and Cell Death in Arthritis (락석등(絡石藤)의 관절염에 대한 염증 및 세포사 억제 작용)

  • Hwang, Man-Young;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.436-441
    • /
    • 2006
  • Rheumatoid arthritis is a chronic, systemic, and inflammatory autoimmune disorder that affects 1% of the adult population worldwide. Osteoarthritis is a multifactorial disease with high morbidity that is characterized by degradation of the matrix and destruction of articular cartilage. In this study, we examined the inhibition effect of Trachelospermi Caulis on the inflammation($TNF-{\alpha}$, $IL-1{\beta}$, NO), cartilage protection(MMP-13), and cell death in arthritis. RAW 264.7 and SW 1353 cells were cultivated in DMAE(GibcoBRL, USA) with 5% FBS and Fungizone in $37^{\circ}C$, 5% CO2. THP-1 cells were cultivated in RPMI(GibcoBRL, USA) with 5% FBS and Fungizone in $37^{\circ}C$, 5% CO2. Activity of caspase-3, XIAP, Cytochrome C in the cell was examined by using western blot. The results obtained were as Follows; Concentration of nitric oxide in Trachelospermi Caulis treatment group significantly decreased compared with that of non-treatment group (P<0.05). In treated group, Concentration of Trachelospermi Caulis was not significantly associated with cell death. Concentration of $TNF-{\alpha}$ and $IL-1{\beta}$ in Trachelospermi Caulis treatment group decreased significantly compared with that of none treatment group (P<0.05). Relative density of MMP-13 in Trachelospermi Caulis treatment group decreased significantly compared with that of none treatment group and dose-response relationship was observed. After treatment of staurosporin in SW1353 which increases cell death, in Trachelospermi Caulis treated group, the cell death was effectively decreased. In conclusion, these results suggest that Trachelospermi Caulis inhibit inflammation and cell death in arthritis. More researches about effect of Trachelospermi Caulis are considered to need.