• Title/Summary/Keyword: XFOIL

Search Result 31, Processing Time 0.014 seconds

Study of an AI Model for Airfoil Parameterization and Aerodynamic Coefficient Prediction from Image Data (이미지 데이터를 이용한 익형 매개변수화 및 공력계수 예측을 위한 인공지능 모델 연구)

  • Seung Hun Lee;Bo Ra Kim;Jeong Hun Lee;Joon Young Kim;Min Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.