• Title/Summary/Keyword: XFEL(X-ray free electron laser)

Search Result 12, Processing Time 0.029 seconds

New Science Opportunities with X-Ray Free Electron Laser (X-선 자유전자 레이저를 위한 새로운 과학)

  • Koo, Tae-Yeong
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.231-236
    • /
    • 2011
  • X-ray Free Electron Laser (XFEL) has been known to be a dream X-ray source opening an epoch in X-ray science with the characteristics of femtosecond pulse, perfect transverse coherence, and ultra-high brightness. Here we introduce the XFEL source shortly and report the status of the worldwide XFEL facilities, and then the experimental instrumentations for XFEL are reviewed in their conceptual classification scheme. Scientific examples and applications proposed in the research area of magnetism for XFEL are briefly mentioned. Finally are summarized the facility overview and the scientific proposals for PAL-XFEL project.

4th Generation Light Source: X-ray Free Electron Laser (4세대 방사광: 엑스선 자유전자레이저)

  • Han, Jang-Hui
    • Vacuum Magazine
    • /
    • v.3 no.4
    • /
    • pp.4-7
    • /
    • 2016
  • An X-ray Free Electron laser facility (PAL-XFEL) has been built in Pohang Accelerator Laboratory to provide X-ray FEL radiations for photon users. The machine consists of a 10 GeV normalconducting S-band linear accelerator and two undulator beamlines. The hard and soft X-ray beamlines will provide FEL radiations with wavelengths of 0.6 to 0.1 nm and 4.5 to 1 nm, respectively. Beam commissioning of PAL-XFEL is ongoing and user service will start in 2017. In this report, the PAL-XFEL layout and the working principle are discussed.

Vacuum system for PAL-XFEL (4세대방사광가속기 진공시스템)

  • Na, Donghyun
    • Vacuum Magazine
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2017
  • The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is a 0.1 nm hard X-ray FEL which aims at providing photon flux higher than $1{\times}10^{12}$ photons/pulse using a 10-GeV electron linac. The vacuum system of the machine consists of an injector section including an S-band photocathode RF gun, 10-GeV electron linac section based on S-band normal conducting accelerating structures and a 150-m long out-vacuum undulator system. We introduce the present status of PAL-XFEL vacuum systems.

Laboratory Astrophysics using Intense X-ray from Free Electron Lasers

  • Chung, Moses
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.4-65.4
    • /
    • 2017
  • The laboratory astrophysics is a new emerging field of basic sciences, and has tremendous discovery potentials. The laboratory astrophysics investigates the basic physical phenomena in the astrophysical objects in controlled and reproducible manners, which has become possible only recently due to the newly-established intense photon and ion beam facilities worldwide. In this presentation, we will introduce several promising ideas for laboratory astrophysics programs that might be readily incorporated in the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). For example, precise spectroscopic measurements using Electron Beam Ion Trap (EBIT) and intense X-ray photons from the PAL-XFEL can be performed to explore the fundamental processes in high energy X-ray phenomena in the visible universe. Besides, in many violent astrophysical events, the energy density of matter becomes so high that the traditional plasma physics description becomes inapplicable. Generation of such high-energy density states can be also be achieved by using the intense photon beams available from the PAL-XFEL.

  • PDF

The Development of Beamline Hutch Structures at PAL-XFEL (PAL-XFEL 빔라인 허치 구조물 개발)

  • Kim, Seungnam;Kim, Myeongjin;Kim, Seonghan;Kim, Yeongchan;Shin, Hocheol;Kim, Jihwa;Kim, Kyeongsuk;Kim, Kwangwoo;Eom, Intae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.567-577
    • /
    • 2016
  • The hutches which are installed in the beamline are largely classified into two, i.e XPP (X-ray pump probe) and CXI (Coherent X-ray image). Laser room is installed on the hutch and provides laser to XPP and CXI simultaneously. And two hutches have heavy crane to install some optics equipments. Safety and reliability of hutch structures should be taken into account for the precise operating of the laser facilities, so vibration analysis is essential to do this. The main purpose of vibration analysis is to install hutch structures with large stiffness. We have changed materials specification several times to install hutch structures having strong stiffness. Now hutch structures were installed and checked vibration status at laser room and XPP hutch. The results of laser table and robot arm satisfy vibration criteria. This paper explains about the design and vibration analysis of hutch structures.

Vacuum system for PAL-XFEL

  • Na, Dong-Hyeon;Ha, Tae-Gyun;Park, Jong-Do
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.110.2-110.2
    • /
    • 2016
  • 4세대 방사광가속기는 0.1nm급 X-선 자유전자레이저(X-ray Free Electron Laser : XFEL) 광원을 빔라인 사용자들에게 제공하기 위하여 2011년 건설을 시작하였고, 2015년부터 장치를 설치하기 시작했으며 현재 건설 완료단계에 이르러 있다. 이 장치에서 진공시스템은 10-11 mbar의 초고진공이 요구되는 전자빔 발생장치인 RF Gun을 포함하는 입사장치구간(Injector)과 전체길이 800 m에 이르는 전자빔을 가속시키는 선형가속기구간(Linac) 그리고 결맞음 방사광을 발생시키는 언듈레이터구간으로 나눌 수 있다. 본 논문에서는 각 구간별 진공시스템에 대한 건설 현황에 대하여 보고하고자 한다.

  • PDF

해외리포트 - X선 자유전자 레이저 시설 SACLA

  • 한국광학기기협회
    • The Optical Journal
    • /
    • s.142
    • /
    • pp.57-64
    • /
    • 2012
  • X선 자유전자 레이저(XFEL:X-ray Free Electron Laser)는 통상의 레이저와 달리 물질에 속박되어 있지 않은 자유전자를 이용해 레이저 증폭을 일으킨다. 특히 펨토초의 펄스형태, 완벽한 결맞음 및 고휘도 등의 특성으로 X선 실험과학분야의 새로운 시대를 예고하는 꿈의 광원장치로 불리고 있다. 일본의 이화학연구소(Rikagaku Kenkyusho) 산하 하리마연구소(Harima Institute)에는 X선 자유전자 레이저 시설인 SACLA(SPring-8 Angstrom Compact free electron Laser)가 존재하며, SACLA의 독특한 설계와 기술은 세계 곳곳에서 건설되고 있는 XFEL 시설의 가이드라인이 되고 있다. 이번호에서는 SACLA 특징, SACLA 위원회와 도달광원 성능, SACLA의 토폰 빔 라인과 광학계 등을 소개한다. 이 원고는 하리마연구소의 이시카와 테츠야(Tetsuya Ishikawa) 소장이 월간 OPTRONICS 2012년 8월호에 기고한 내용으로 그린광학의 유정훈 팀장이 번역에 도움을 주었다.

  • PDF

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

Design Efforts of PAL XFEL RF Components to Reduce RF Breakdown Due to Surface Electric Gradient in High Power Operation

  • Ju, Yeong-Do;Park, Yong-Jeong;Lee, Heung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.239-239
    • /
    • 2013
  • The peak klystron power for the PAL (Pohang Accelerator Laboratory) XFEL (X-ray Free Electron Laser) is up to 80 MW which is higher than that of PLS-II LINAC. To prevent the RF breakdown such a high power operation, some of RF components need to be redesigned to reduce the surface electric field gradient to be less than the breakdown gradient at the vacuum-metal surface. For instances, the redesign of the Stanford Linear Accelerator Energy Doubler (SLED) system, the directional coupler and 3dB power splitter using the finite-difference time-domain (FDTD) simulation will be presented.

  • PDF

Preliminary Radiological Considerations for X-ray Free Electron Laser Project at PAL

  • Lee, Hee-Seock;Hong, Suk-Mo;Kim, Min-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1190-1191
    • /
    • 2004
  • New $4^{th}$ generation synchrotron facility, XFEL, is almost similar to previous $3^{rd}$ generation synchrotron facility in the view of radiological aspects and most important positions are a dump and synchrotron radiation beam line. In this paper, tile radiation protection solutions for them and undulator are suggested and discussed.

  • PDF